P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access
2008,(2), (1) :94-105

ADAPTIVE LEARNING RATE VERSUS RESILIENT %A
ACKPROPAGATION FOR NUMERAL RECOGNITION !IJ

Muntaser Abdul-Wahed Salman

University of Alanbar- College of Computer

ARTICLE INFO ABSTRACT
Received: 1 / 4 /2008 Two types of neural networks learning algorithms were created, trained, tested,
Accepted: 24 /4 /2008
Available online: 30/4/2008 and evaluated in an effort to find the appropriate neural network training method for
DOI: 10.37652/juaps.2008.15445
XGB/XSrT(:i:/E use in numeral recognition problem. The purpose of this study was to compare the
LEARNING RATE, training speeds of two neural networks Backpropagation learning algorithms

BACKPROPAGATION ,

(Adaptive learning rate and Resilient) when exposed to ten number recognition data
NUMERAL RECOGNITION.

sets. Each algorithm was trained using ten data sets as a basic set (Boolean value),
and a complex (noisy) set. The trials conducted indicated a significant difference
between the two algorithms in the basic data set, with the Resilient training algorithm
the neural network trained faster.The creation, training, and testing of each neural
network was done using the MathWorks software package MATLAB which contains
a “Neural Network Toolbox” that facilitates rapid creation, training, and testing of
neural networks. MATLAB was chosen to use for learning algorithm development

because this toolbox would save an enormous amount programming effort.

Introduction

It is often useful to have a machine perform Recognition of handwritten numerals is important
pattern recognition. In particular, machines that can read because of its applicability to a number of problems, like
symbols are very cost effective. A machine that reads postal code recognition and information extraction from
banking checks can process many more checks than a fields of different forms. In the Indian context, there
human being in the same time. This kind of application exists a need for development and/or evaluation of the
saves time and money, and eliminates the requirement existing techniques for recognition of numerals written
that a human perform such a repetitive task. Pattern in Indian scripts. Generic techniques cannot, in general,
recognition in neural networks is a very broad field, but tackle problems associated with script specific
a common use for neural networks is handwriting or peculiarities. In this paper, we present a neural network—
numeral recognition. This pattern matching technique based architecture for recognition of handwritten
enables computers to identify and utilize human numerals. Although the architecture is generic, it has
handwriting for numbers as well as characters [1, 3, 4]. been found to be useful for recognition of handwritten

numerals.

* Corresponding author at: University of Alanbar- College of
Computer, Iraq.E-mail address: muntaserabd1@yahoo.com

Q¢


mailto:muntaserabd1@yahoo.com

P- ISSN 1991-8941 E-ISSN 2706-6703
2008,(2), (1) :94-105

An artificial neural network (ANN or NN for
short) is an artificial intelligence closely modeled after a
human brain. Such a neural network is composed of
computer-programming objects called nodes [6]. These
nodes closely correspond in both form and function to
their organic counterparts, neurons. Individually, nodes
are programmed to perform a simple mathematical
function, or to process a small portion of data. A node
has other components, called weights, which are an
integral part of the neural network. Weights are variables
applied to the data that each node outputs. By adjusting
a weight on a node, the data output is changed, and the
behavior of the neural network can be altered and
controlled. By careful adjustment of weights, the
network can learn. Networks learn their initial behavior
by being exposed to training data. The network
processes the data, and a controlling algorithm adjusts
each weight to arrive at the correct or final answer(s) to
the data. These algorithms or procedures are called
learning algorithms.

Neural networks are often used for pattern
recognition and classification. Their adaptability and
learning capabilities make them excellent choices for
tasks requiring comparison of data sets or extracting
subtle patterns from complex data [7, 11]. The field of
neural networks has a history of some five decades but
has found solid application only in the past fifteen years
[1, 6], and the field is still developing rapidly. Thus, it is
distinctly different from the fields of control systems or
optimization where the terminology, basic mathematics,
and design procedures have been firmly established and
applied for many years [6, 4]. This project was focused
on numeral recognition in its most basic form, individual
number recognition. The rationale for this project was to

improve efficiency neural network numeral recognition.

Journal of University of Anbar for Pure Science (JUAPS)

40

Open Access

The study conducted a series of tests to determine which
of two learning algorithms, Adaptive learning rate
Backpropagation [2] or Resilient Backpropagation [10],
trained a neural network faster. Ten sets of number
where used to compare the algorithms, a basic Boolean
value set, and noisy (which may be a handwritten)

number set.

Learning Algorithms

Backpropagation was created by generalizing the
Widrow-Hoff learning rule to multiple-layer networks
and nonlinear differentiable transfer functions[6]. Input
vectors and the corresponding target vectors are used to
train a network until it can approximate a function,
associate input vectors with specific output vectors, or
classify input vectors in an appropriate way as defined
by you. Standard backpropagation is a gradient descent
algorithm[1] in which the network weights are moved
along the negative of the gradient of the performance

function as shown in the following equation.
W(t+2) =W (t) - a*eE/oW(t) __

Where « is the constant learning rate, and 6E/ oW (1) is

the derivative (slope) of the error E at time t (in epochs).

There the
Backpropagation, gradient descent model. Two of these
the Adaptive

are  many variations on

are learning rate Backpropagation
algorithm [2], referred to as gda, and the Resilient
Backpropagation [10], known as Rprop.
Adaptive learning rate Backpropagation algorithm:-
With standard steepest descent, the learning rate is
held constant throughout training. The performance of
the algorithm is very sensitive to the proper setting of
the learning rate [9]. If the learning rate is set too high,

the algorithm may oscillate and become unstable. If the



P- ISSN 1991-8941 E-ISSN 2706-6703
2008,(2), (1) :94-105

learning rate is too small, the algorithm will take too
long to converge. It is not practical to determine the
optimal setting for the learning rate before training, and,
in fact, the optimal learning rate changes during the
training process, as the algorithm moves across the
performance surface.

The performance of the steepest descent algorithm
can be improved if we allow the learning rate to change
during the training process [9]. An adaptive learning rate
will attempt to keep the learning step size as large as
possible while keeping learning stable. The learning rate
is made responsive to the complexity of the local error
surface. An adaptive learning rate requires some changes
in the training procedure used by traingda (function used
in Matlab) [5].

First, the initial network output and error are
calculated. At each epoch new weights and biases are
calculated using the current learning rate. New outputs
and errors are then calculated. If the new error exceeds
the old error by more than a predefined ratio
max_perf_inc, the new weights and biases are discarded.
In addition, the learning rate is decreased (typically by
multiplying by Ir_dec). Otherwise, the new weights, etc.,
are kept. If the new error is less than the old error, the
learning rate is increased (typically by multiplying by

Ir_inc). This can be shown in the following equation:

a(t)*Ir _dec  If E(t)
alt+1) ={a(t)*lr_inc I E()
a(t) if E(t)=E(t-1)

Journal of University of Anbar for Pure Science (JUAPS)

41

Open Access

Resilient Backpropagation (Rprop) training
algorithm:-

The purpose of the resilient backpropagation
(Rprop) training algorithm is to eliminate these harmful
effects of the magnitudes of the partial
derivatives[8,9,10]. Only the sign of the derivative is
used to determine the direction of the weight update; the
magnitude of the derivative has no effect on the weight
update. The size of the weight change is determined by a
separate update value. The update value for each weight
and bias is increased by a factor delt_inc whenever the
derivative of the performance function with respect to
that weight has the same sign for two successive
iterations. The update value is decreased by a factor
delt_dec whenever the derivative with respect that
weight changes sign from the previous iteration. If the
derivative is zero, then the update value remains the
same. Whenever the weights are oscillating the weight
change will be reduced. If the weight continues to
change in the same direction for several iterations, then
the magnitude of the weight change will be increased. A
complete description of the Rprop algorithm is given in

[10]. This can be shown in the following equation:

— U if OE(t)/oW(t) >0
AW (t+1) ={+u  ifOE(t)/OW(t) <0
0 else

—(@3)
u is the weight step, calculated by multiplying the
derivative of the current slope and the previous slope as

described above.

3. Numeral Recognition Procedure
A network is to be designed and trained to
recognize the 10 numbers (from 0 to 9). An imaging

system that digitizes each number centered in the



P- ISSN 1991-8941 E-ISSN 2706-6703
2008,(2), (1) :94-105

system’s field of vision is available. The result is that
each number is represented as a 5 by 7 grid of Boolean
values. White has an input value of 0, black a value of 1.
Each number is a 5x7 matrix. As shown in fig.(1)
However, the imaging system is not perfect and the
numbers may suffer from noise. Perfect classification of
ideal input vectors is required and reasonably accurate
classification of noisy vectors.

The ten 35-element input vectors are defined in
the function file recog as a matrix of input vectors called
number. The target vectors are also defined in this file
with variable called targets. Each target vector is a 10-
element vector with a 1 in the position of the number it
represents, and 0’s everywhere else. For example, the
number O is to be represented by a 1 in the first element
(as 0 is the first number of the numbers), and 0’s in

elements two through ten.

Initialization

In our problem the neural network needs 35 inputs
and 10 neurons in its output layer to identify the
numbers. The network is a two-layer log-sigmoid/log-
sigmoid network. The log-sigmoid transfer function was
picked because its output range (0 to 1) is perfect for
learning to output Boolean values. The hidden (first)
layer has 10 neurons. This number was picked by
guesswork and experience. If the network has trouble
learning, then neurons can be added to this layer.

The network receives the 35 Boolean values as a
35-element input vector. It is then required to identify
the number by responding with a 10-element output
vector. The 10 elements of the output vector each
represent a number. To operate correctly, the network
should respond with a 1 in the position of the number

being presented to the network. All other values in the

Journal of University of Anbar for Pure Science (JUAPS)

av

Open Access

output vector should be 0. In addition, the network
should be able to handle noise. In practice, the network
does not receive a perfect Boolean vector as input.
Specifically, the network should make as few mistakes
as possible when classifying vectors with noise of mean
0 and standard deviation of 0.2 or less. The two-layer
network is created with newff and shown in Fig. (2).
S1=10;

[R,Q] = size(number);
[S2,Q] = size(targets);

P = number;
net=newff(minmax(P),[S1 S2],{'logsig’
'logsig'},'traingda’);

Training

To create a network that can handle noisy input
vectors it is best to train the network on both ideal and
noisy vectors. To do this, the following conditions
should be considered:-

The network is first trained on ideal vectors until
it has a low sum-squared error.

Then, the network is trained on 10 sets of ideal
and noisy vectors. The network is trained on two copies
of the noise-free number at the same time as it is trained
on noisy vectors. The two copies of the noise-free
number are used to maintain the network’s ability to
classify ideal input vectors.

Unfortunately, after the training described above
the network may have learned to classify some difficult
noisy vectors at the expense of properly classifying a
noise-free vector. Therefore, the network is again trained
on just ideal vectors.This ensures that the network
responds perfectly when presented with an ideal number.

Training is done using two neural networks

Backpropagation learning algorithms, adaptive learning



P- ISSN 1991-8941 E-ISSN 2706-6703
2008,(2), (1) :94-105

rate with the function traingda and Resilient
Backpropagation with the function trainrp respectively.

A study was conducted to compare the
convergence or learning speed of two different weight
adjustment algorithms (gda and Rprop) in feed-forward
neural networks. Ten different training data sets where
created, one basic set made up of binary number
bitmaps, and a second complex set made up of human
handwriting grayscale bitmaps. The basic set was used
to train a network using gda, and a network using Rprop.
This was repeated 10 times for each algorithm, to
eliminate the possible confounding variable of random
weight setting. The results from these 20 trials were
compared to each other. The complex set was also used
to train a gda network, as well as a Rprop network.
Again, to eliminate harmful initial weight settings, each
simulation was run 10 times. The complex training set
results were compared to each other. In total, 40 trials
were run (10 for each training set and algorithm
combination).

The first training set was made up of ten 5x7 pixel
standard Binary number bitmaps (see fig.1). The second
training was made up of four set of 5x7pixel bitmaps,
two of standard binary bitmaps as well as two of noisy
sets (see fig.3 a & b). The networks were simulated
using Matlab.

The basic networks (5x7 number set) had 35 input
nodes (each corresponding to a bit in the 5x7 matrix), 10
nodes in the one hidden layer, and ten output nodes
(parallel to the number of patterns in the set). The exact
parameters of both algorithms used are considered to be
standard as shown in Table 1.

There are six training parameters associated with
traingda and trainrp algorithms: (epochs, show, goal,

time, min_grad and max_fail)

Journal of University of Anbar for Pure Science (JUAPS)

A

Open Access

The training status is displayed for every show
iterations of the algorithm. (If show is set to NaN, then
the training status is never displayed.) The other
parameters determine when the training stops. The
training stops if the number of iterations exceeds epochs,
if the performance function drops below goal, if the
magnitude of the gradient is less than min_grad, or if the
training time is longer than time seconds. max_fail, is
associated with the early stopping technique.

In traingda algorithm the learning rate Ir is
multiplied times the negative of the gradient to
determine the changes to the weights and biases. This
change has been described in section 2.2. If the new
error exceeds the old error by more than a predefined
ratio, max_perf_inc, the new weights and biases are
discarded. In addition, the learning rate is decreased by
multiplying by Ir_dec. Otherwise, the new weights, etc.,
are kept. If the new error is less than the old error, the
learning rate is increased by multiplying by Ir_inc.

In trainrp algorithm the size of the weight change
is determined by a separate update value. The update
value for each weight and bias is increased by a factor
delt_inc whenever the derivative of the performance
function with respect to that weight has the same sign
for two successive iterations.

The update value is decreased by a factor delt_dec
whenever the derivative with respect to that weight
If the

derivative is zero, then the update value remains the

changes sign from the previous iteration.
same. delta0 and deltamax are the initial step size and
the maximum step size, respectively. The performance
of Rprop is not very sensitive to the settings of the

training parameters [4].



P- ISSN 1991-8941 E-ISSN 2706-6703
2008,(2), (1) :94-105

Training without Noise
The network is initially trained without noise for a
maximum of 1000 epochs or until the network sum-
squared error falls beneath 0.001.
P = number;
T = targets;
net.performFcn = 'sse’;
net.trainParam.goal = 0.001;
net.trainParam.show = 50;
net.trainParam.epochs = 1000;
[net,tr] = train(net,P,T);

Training with Noise

To obtain a network not sensitive to noise, we
trained with two ideal copies and two noisy copies of the
vectors in number. The target vectors consist of four
copies of the vectors in target. The noisy vectors have
noise of mean 0.1 and 0.2 added to them as shown in
fig.(3 a & b) below. This forces the neuron to learn how
to properly identify noisy numbers, while requiring that
it can still respond well to ideal vectors.

To train with noise, the maximum number of
epochs is reduced to 250 and the error goal is increased
to 0.1, reflecting that higher error is expected because
more vectors (including some with noise), are being
presented.
netn = net;
netn.trainParam.goal = 0.1;
netn.trainParam.epochs = 250;

T = [targets targets targets targets];
for pass = 1:10

P = [number, number, ...

(number + randn(R,Q)*0.1), ...
(number + randn(R,Q)*0.2)];
[netn,tr] = train(netn,P,T);

Journal of University of Anbar for Pure Science (JUAPS)

14

Open Access

end

Once the network is trained with noise, it makes
sense to train it without noise once more to ensure that
ideal input vectors are always classified correctly.
Therefore, the network is again trained with code

identical to the previous section.

Results

The purpose of this study was to compare the
training speeds of two neural network learning
algorithms (gda and Rprop), when exposed to ten
numeral recognition data sets. Based on previous
studies, it was hypothesized in this project that if the
learning algorithm used is resilient (Rprop), then it will
have a quicker convergence time (fewer training cycles,
or epochs) than gda, when both exposed to the same
numeral recognition training data.

Data collection for this study was done by
collecting a log file of all outputs from the neural
network simulator (Matlab NN Toolbox). There were
ten trials of each algorithm (Rprop and gda) for each
data set (basic and noisy). The algorithms were
compared against each other for speed of training. The
log files contained measurements of the Sum Squared
Error (SSE) versus the number of training epochs. These
total training time values were considered the dependent
variable in this study. These values where assembled
into two tables, one for the basic data set in the appendix
Table (A.1), and one for the complex data set Table
(A.2).

For the basic data set, there was a significant
difference between the two algorithms, indicating that
Rprop trained faster than gda as clear from Table (A.1).
This difference is also well indicated by the means of the

basic data set training times, with Rprop’s mean being



P- ISSN 1991-8941 E-ISSN 2706-6703
2008,(2), (1) :94-105

66.3 epochs, and gda’s being 473.8 epochs, a difference
of approximately seven times. A second test was
conducted on the noisy data set, to compare the
algorithms in a different situation. Also Table (A.2)
indicating that there was significant difference between
the training times of the two algorithms. This was also
indicated fairly well by the means of the two training
times, with Rprop's being 47.2 epochs, and gda's at 114,
a difference of approximately two and a half times.

The Rprop algorithm trained faster than the gda
algorithm for the basic data set as well as the complex
data. This would indicate that for true number
recognition problem Rprop is a better choice for training
its neural networks.

There were no problems encountered in this study.
Possible confounding variables were the small size of
the training set and the small number of networks
trained (only ten per algorithm, per data set). Further

exploration into this topic is certainly warranted.

System Performance

The reliability of the neural network pattern
recognition system is measured by testing the network
with hundreds of input vectors with varying quantities of
noise. This paper tests the network at various noise
levels, and then graphs the percentage of network errors
versus noise (see Appendix B). Noise with a mean of 0
and a standard deviation from 0 to 0.5 is added to input
vectors. At each noise level, 100 presentations of
different noisy versions of each number are made and
the network’s output is calculated. The output is then
passed through the competitive transfer function so that
only one of the 10 outputs (representing the perfect
number of the ten numbers), has a value of 1. The

number of erroneous classifications is then added and

Journal of University of Anbar for Pure Science (JUAPS)

Open Access

percentages are obtained as shown in the Appendix C
graph.

The solid line on the graph shows the reliability
for the network trained with and without noise. The
reliability of the same network when it had only been
trained without noise is shown with a dashed line. Thus,
training the network on noisy input vectors greatly
reduces its errors when it has to classify noisy vectors.
The network trained with gda Algorithm did not make
any errors for vectors with noise of mean from 0.0 to
0.2. When noise of mean 0.25 was added to the vectors
both networks began making errors. While the network
trained with Rprop Algorithm did not make any errors
for vectors with noise of mean from 0.0 to 0.05. When
noise of mean 0.1 was added to the vectors both
networks began making errors. This means that Rprop
Algorithm has more error in training noisy inputs.

If a higher accuracy is needed, the network can be
trained for a longer time or retrained with more neurons
in its hidden layer. Also, the resolution of the input
vectors can be increased to a 10-by-14 grid. Finally, the
network could be trained on input vectors with greater
amounts of noise if greater reliability were needed for
higher levels of noise.To test the system, a number with
noise can be created and presented to the network.
noisy9 = number(:,10)+randn(35,1) * 0.2;
plotchar(noisy9);

A2 = sim(net,noisy9);A2 = compet(A2);
answer = find(compet(A2) = = 1);
plotchar(number(:,answer));

Here is the noisy number and the number the
network picked (correctly) as shown in Fig.(4).

The network is trained to output a 1 in the correct
position of the output vector and to fill the rest of the

output vector with 0’s. However, noisy input vectors



P- ISSN 1991-8941 E-ISSN 2706-6703
2008,(2), (1) :94-105

may result in the network not creating perfect 1’s and
0’s. After the network is trained the output is passed
through the competitive transfer function compet. This
makes sure that the output corresponding to the number
most like the noisy input vector takes on a value of 1,
and all others have a value of 0. The result of this post-

processing is the output that is actually used.

Conclusions

Comparison of the results of the study indicated
that:-

The original research hypothesis that Rprop would
perform faster in all cases was proven correct. However,
since Rprop performed much better than gda during the
basic trials, it can be inferred that the hypothesis is
supported for our problems.

To eliminate the possible confounding variables in
this study, the number of trials could be increased and
the size of the data sets also enlarged.

Other back-propagation based algorithms could be
comparatively tested fairly easily, utilizing the same data
sets and similar network structures.

This problem demonstrates how a simple pattern
recognition system can be designed. Note that the
training process did not consist of a single call to a
training function. Instead, the network was trained
several times on various input vectors. In this case,
training a network on different sets of noisy vectors
forced the network to learn how to deal with noise, a

common problem in the real world.

References:
1. Ben, K. and Patrick S. (1996). An Introduction to
Neural Networks. Eighth Edition. November 1996.

Journal of University of Anbar for Pure Science (JUAPS)

10.

11.

Open Access

Fahlman, S. (1988). An Empirical Study of Learning
Speed Carnegie
Mellon: CMU-CS-88-162

Firas, H. (2000). Handwritten Numeral Recognition

in Back-Propagation Networks.

Using Neural Networks. EE368, Stanford University.
27 2000.
http://scien.stanford.edu/class/ee368/projects2000/pr

May, Available at
oject/nodel.html.

Goss, N. J. (2000). Resilient Backpropagation versus
Quickprop for Character Recognition in Neural
Networks.

Howard, D. and Mark, B. (2002). Neural Network
Toolbox for use with Matlab. 'User's Guide Version
4'. July 2002.

Jacek, M. Zurada (1996). Introduction to Artificial
Neural Systems.

Klimis, S. (2000). Hand Gesture Recognition Using
Neural Networks

Riedmiller, M. (1994). Rprop - Description and
Implementation Details Technical Report. University
of Karlsruhe: W-76128 Karlsruhe.

M. (1994).

Learning in  Multi-layer

Riedmiller, Advanced Supervised

Perceptrons  From
Backpropagation to Adaptive Learning Algorithms.
University of Karlsruhe: W-76128 Karlsruhe.
Riedmiller, M. and H. Braun 1993. A direct adaptive
method for faster backpropagation learning: The
RPROP algorithm. Proceedings of the IEEE
International Conference on Neural Networks, San
Francisco, 1993.

Sang-W. M. and Seong-G. K. (2002). Pattern
Recognition with Block-based Neural Networks. O-

7803-7278-6/2002 ©2002 IEEE.



P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access
2008,(2), (1) :94-105

-

Fig. (1) Graphics of Basic Inputs Numeral

it il Oty

Ly
i

)\ il
i) Hupiiie (b)

Fig.(3) Graphics of Noisy Data Numeral
(a) with 0.1 noise added (b) with 0.2 noise added

Fig.(2) Neural Network Structure for Our Problem



P- ISSN 1991-8941 E-ISSN 2706-6703
2008,(2), (1) :94-105

(a)

AL

L

(b)

Fig.(4) Tested Number

(a) Correct number (b) Noisy number

Table 1 — Algorithm Parameters

Parameters of
Parameters of Rprop
Gda Algorithm Algorithm
epOChS:- 1000 epochs: 1000
show: 50 show: 50
goal: 0.001 W
Ir: 0.0100 goal: 0.001
Ir inc: 1.0500 delta0: 0.0700
Ir dec: 0.7000 delt_inc: 1.2000
S Fail- delt_dec: 0.5000
max_fail: 5 0
max_perf_inc: max_fail: 5
T0400 deltamax: 50
milﬁogggd : min_grad:
1.0000e-006 1%?22_6-'?36
time: Inf :

Appendix A: Training Data Tables

Basic Data Set
Total Training Time (epochs)

Gda Rprop
516 62
479 66
365 62
426 66
468 62
433 67
469 58
486 73
551 66
545 81

Mean=

473.8 66.3

Journal of University of Anbar for Pure Science (JUAPS)

Open Access

Complex Data Set
Total Training Time
(epochs)

Gda Rprop
118 24
139 59
133 15
135 59
120 15
127 81
123 68
108 18
129 87
126 45

Mean=
125.9 47.2

Appendix B: Error Performance Graph

Performance is 0.000958254, Goal is 0.001
10 T T T T T T T T

L= BN S P w B

Tr=iri mno-E o=

10 | | | | | | | | | |
0 30 100 130 200 250 300 350 400 430 300

516 Epochs

Fig. (B.1) Error Performance of gda training
Algorithm



P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access
2008,(2), (1) :94-105

Performance is 0.000937032, Goalis 0.001 Percentage of Recogrition Errars

10‘ T T T T T T ™3 § T T T T T T T T T

Trarmmng-Blue Goalk-Black

10 | L | | | | |
0 10 20 0 40 50 f0 70 0 d R N T

73 Epachs 0 005 01 015 02 025 03 035 04 045 05

Fig. (B.2) Error Performance of Rprop training Nolse Leve

Algorithm Fig. (C.2) Percentage Error for Rprop training

. Algorithm
Appendix C: Percentage Error Graph

Percentage of Recognition Emors
3 T T T T T 13 T T

25

0.4F

| | | I I L | |
0 003 01 015 02 028 03 03 04 045 045
Moise Level

Fig. (C.1) Percentage Error for gda training
Algorithm



P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access
2008,(2), (1) :94-105
Aaey) uall

Olalu aalgllae  ualiia

Email: muntaserabdl@yahoo.com

W EN]

Uil dplie dypac 4SS i Ayl el Uglae (8 aganiily aguand aguyD agaladinl & dpasll QAN X Grkb (e (e s
G Aoy Jame a23id ) el ol Y1 S Apanll SN i)yl cappad Aoy 5l Caad) 138 e Gyl Lgydial) AT s
numeral sydall MacY) Saal Luiac A5 Cuyai aie Resilient (e s de s Jare 2230 & <l e Adaptive learning rate —uSic
Baies A gane Ay (Al Jia) Apalod Ao geneS pall AV (o paalae Bydie aladinly Leaas a3 daaj s JS 3yel) 26,3 recognition
el D) IS s ) Cs bl e b Zulul) Ao sanall il c pealy 38 dga il Leal) HLial) duball | (4 i)
(2122 ) DS 03¢ sl ReSIliENt (ye i A jus Jane alasinly dlacY)

$siny Cun MATLAB CBildl MathWOorks gl y 4e sesa aladiuls o8 dpsasl) ClSal) Cupat il jlod pandy cupad ¢ o L)
shgd caparll (3yda Asayy Ay Cadgy HLaitly dyimal) CISLEN (ands aypats o L) Aulee o Jgw 3 dyiaal) WSS gl paia e

aal) Al

wr


mailto:muntaserabd1@yahoo.com

