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ABSTRACT

Redundant variables not only in LASER applications, but in all experimental
works are disturbing statistical analysis as a result of highly correlation among them.
It is not easy sometimes to identify which set of variables is redundant and which one

Keywords: is retained. In addition, consideration of huge sets of variables will make it difficult
CATPCA, _ to point out the joint effects of any subset of variables on a certain phenomenon. It is
ii:g:;'”kage Clustering, well know that continuous variables can be transformed into a discrete (categorical)

form depending on predefined intervals, thus, the categorical principal component
analysis was adopted here in this paper to identify the discarded set of variables when
the data contained some variability. The effect of identifying groups of retained
variables was compared by observing the natural grouping of elements using single

linkage clustering of elements.

Introduction

In most of applied disciplines, many variables
are sometimes measured on each individual, which
result a huge data set consisting of large number of
variables, say pl. Using this collected data set in any
statistical analysis may cause several troubles.
The dimensionality of the data set can often be
reduced, without disturbing the main features of the
whole data set by Principal Component Analysis
(PCA) technique2. Dimensionality reduction is
affected if k (<< p) of the Principal Components (PCs)
convey virtually all the information inherent in the p
variables3, 4. However, the constructed PCs may not
be easy to interpret in terms of all the original p
variables. Therefore, it is useful to reduce the number
of variables as much as possible whilst capturing most
of the variation of the complete data set, X.

Single-Linkage Clustering

Clustering is the classification of objects into
different groups, or more precisely, the partitioning of
a data set into subsets (clusters), so that the data in
each subset (ideally) share some common trait - often
proximity according to some defined distance
measure. Data clustering is a common technique for
statistical data analysis, which is used in many fields,
including machine learning, data mining, pattern
recognition, image analysis and bioinformatics.
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The single linkage clustering was considered
in this research work. Usually the distance between
two clusters A and B is:

min{d(x,y):x € A,y € B}

The mean distance between elements of each
cluster (also called average linkage clustering)e:
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The Algorithm

Let’s now take a deeper look at how Johnson’s
algorithm works in the case of single-linkage
clustering. The algorithm is an agglomerative scheme
that erases rows and columns in the proximity matrix
as old clusters are merged into new ones.

The N*N proximity matrix is D = [d(i,j)]. The
clusterings are assigned sequence numbers 0,1,......, (n-
1) and L(K) is the level of the kth clustering. A cluster
with sequence number m is denoted (m) and the
proximity between clusters (r) and (s) is denoted d
[(r).()].

The algorithm is composed of the following
steps:

1. Begin with the disjoint clustering having level L(0)
= 0 and sequence number m = 0.

2. Find the least dissimilar pair of clusters in the
current clustering, say pair (r), (s), according to
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d[(r),(s)] = min d[(i),(j)]where the minimum is over
all pairs of clusters in the current clustering.

3. Increment the sequence number : m = m +1. Merge
clusters (r) and (s) into a single cluster to form the
next clustering m. Set the level of this clustering to
L(m) =d[(n).(s)]

4. Update the proximity matrix, D, by deleting the
rows and columns corresponding to clusters (r) and
(s) and adding a row and column corresponding to
the newly formed cluster. The proximity between
the new cluster, denoted (r,s) and old cluster (K) is
defined in this way:

d[(k), (r,s)] = min d[(k),(r)], d[(k).(s)]

5. If all objects are in one cluster, stop. Else, go to

step 2.

CATPCA

Clustering analysis commonly falls into two
main categories; clustering cases (observations) and
clustering variables. In the clustering variables
techniques researchers very often aimed to reduce
dimensionality of the data (i.e, reducing the number of
variables to the minimum such that the retained set of
variables will not harm the further analysis or data
investigations).

In this context, principal component analysis
is @ common technique used to reduce dimensionality.
This technique is very sensitive to outliers and extreme
values. As a result it would not give an appropriate,
efficient and reliable classification of variables and/or
cases. However, the categorical principal component
analysis CATPCA is found to be not affected by
outliers or extreme values, and therefore it assumed to
give better results when adopted in situations
assuming considerable data variability".

Data

The considered data in this paper were the
output of a research work entitled "The production of
multi-element opacity targets for X-ray laser
experiments” which carried out by Spindloe C.
(2006/2007)".

- — —_

3 § =z 5/’\ LE);\a g e\‘l

S|E|<| 28| 55| 85| ¢
— -

L 5 zZ< | < ir

1 Si YE | YV YV VY | Yo YV | VY

2 Na | VY AYS At4 V.o Y

3 Fe A o.¢) 0. 0¢ Yoo f LV

4 Ca | ¥ vy YA V.40 o8

Journal of University of Anbar for Pure Science (JUAPS)

\Al

Open Access

5 | Mg | Y | Y.\ Yy, YA ]y

6 K | va ] v T NGRS

7 Al Vv b 8 AR .Y

8 o) Al ga.aa [ ey ve [ ne v | aA
Results

The use of the CATPCA revealed that three
main groups of variables can be noticed.All groups are
different in the variability among members of the
groups as well as between groups (figure 1).

Regarding single linkage clustering of
variables, figure 2 shows almost the same grouping
obtained by the CATPCA.

Both figures resulted in the same conclusions
regarding the retained set of variables.

In order to give a better idea about the effect
of discarding variables on the grouping of elements,
single linkage clustering was performed twice; once
before discarding redundant variables and other one
after discarding variables (figures 3 and 4). In both
cases the grouping of elements never changed which
means that the effect of the discarded variables can be
neglected.

Discussion

CATPCA is an efficient statistical technique
in the cases of nominal and ordinal set of variables.
Numeric variables can be transferred to limited
number of categories and treated as categorical data
which will eliminate the effects of outliers and
extreme values. Single linkage clustering of cases
using Euclidian distance as a measure of similarity
will result in a fairly similar conclusions as the
CATPCA.

Conclusion

When redundant variables are well identified,
methods of data analysis will not significantly affect
after discarding such subset of variables. As obtained
in this paper, dendrograms of observations (elements)
clustering are not significantly different before and
after discarding redundant variables.
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Dendrogram using Single Linkage
Rescaled Distance Cluster Combine
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Fig. 2. Dendrogram using Single Linkage.
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Fig.3. Dendrogram of clustering cases using Single Linkage (all variables).
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Fig.4. Dendrogram of clustering cases using Single Linkage (only retained variables).
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