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Abstract:In this papers we study a new concept namely Mixed cofibration (M- cofibration) and Mixed
Hurewicz cofibration (M- Hurewicz cofibration).Most of theorem which are valid for cofibrationwill bealso
validfor (M- cofibration) the otherswill bevalid if we add extra condition . Among the result we obtain are:

1-A product of two Mixed Cofibration(Mixed Hurewicz cofibration) is also a Mixed Cofibration(Mixed
Hurewicz cofibration)2- The M-pullback of Mixed Cofibration(Mixed Hurewicz cofibration)is also Mixed

Cofibration(Mixed Hurewicz cofibration)
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Introduction:-
In our papers ,we introduction and study the new
concept of M-Cofibration(M-Hurewciz Cofibration)

e ¥ obe ay e STV
f: Xy =Y ae two fiber space and
a:X, = X, such  that flocr=f:’ let
X=X}  f=0r) 4
X, f.i'rﬂ’}’ has Mixed Lowering homotopy

property (M-LHP) w.r.t. aspaceZ iff given a map
Y =2 and a homotopy gf:kl —Z
satisfying hofz = gooa then there exist a

homotopy hf" Y=2 with fo = T gng

n:0f1 = Gt toral TE T \ifiver space is

L)
called M-cofibration For class R if f has (M-LHP)
Y
for each Z€ H.

The word map in this work means continuous
L)

means the classes of topological

I

spaceand © means[0,1].
Preliminaries:

function,

Record here same basic concepts and clarify
notions used in the sequel

Definition(3,2)2-1:- A map P°E = B s
said to have the lowering homotopy property

iff given amap h:B — X and

E—=X_ g P0P="1o

.B— X

then there exis a homotopy Re: with
ho =R g heOD = fr o 4 L€

(LHP) w.r.t A

ahomotopy ﬁ :

. Now
LY

let be a given class of topological space amap

Pisacofibrationwrt - iff PPE = B g
(LHP) W.r.teachX €N
Definition(1)2-2:-Let X142+ ¥ pethree

topological space, IetX = {X1,. X3}
F = e fiiXe = ¥
X, =Y

are two fiber space and

; ,
X1l '“}isam-ﬁber space (Mixed fiber
space)
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X;

f2

X, ==X a= identfr}’,

If

f = fl = f:'_' then {X‘ f' }r} isthe usual
fiber space

2 1et K SV @ g o mfiber space
Vo EY ypenF = 1700} isthem-fiber

)
over 0

Definition(1)2-3:- the X1 [+ ¥+ @ pe a1
g:Y =Y

fiber structure ,k be any space,and
be any continuous map into base Y Let
Xy={(xy,y)EX; XY:fi(xy) = g(y))]

and

Xy ={(,y)EX; XY :£i(x;) =g(3))

then
X' ={XX1
is called a M-pullback of
)—c byg and_
fr={nf}x —Y

is called induced

M-function of — by g
Define at Xy = X, by
a (x5,7) = (a(x3),y"

To show_that @ is continuous

snee® T4 X I—"" , @ iscontinuousand ¥
is continuous then & is continuous

To show @ is commutative .
f oa (xp,y )= f'._ (a(x,),y) =¥
f, (X, y) =y f’laa" =f,

M -Cofibration

therefore

F
Definition 3—11-Let"li be any space
fi: Xy =Y ,fz:Xf - Yaretwofiberspace
and aX, = Xlsuchthatﬁ—ﬁa - fz,let

X=X, X} f={fFle

{XJ f- Y, ff}, has Mixed Lowering homotopy

> X:L
property (M-LHP) w.r.t. aspacez iff given amap
¥ = Zandahomotopy“—:?::‘Il'"l —=Z

satisfying hof; = gooa then there exist a

haV =2 ho =h 4

homotopy with

h.of; = g. forall £ € ‘I. M-fiber spaceis

_ R_f

called M-cofibration For class  ~if / has(M-LHP)
)

foreachz €N

Proposition 3-2:-Every Cofibration is

Mixed Cofibration

Proof:- let K1Y, a) be a M-fiber space

wchtha X1 = X2 = X, a = zdenrzr_‘v,

f=F =f:_|et”:}- _'Zandahomotopy
Ge: Xy = Z g MO/ = Go0
Y= 2Z

there exis a homotopy s with
ho=h_4he0fy = Gepo t €1

Then f has (M-LHP) w.r.t Z

Therefore f has M-cofibration

f:X-=Y
Proposition 3-3:- let — and

frX =Y
- be two M-Cofibration then
[Xf:XXX'=Y XY

Cofibration

Proof:- let Z be any arbitrary space
g Y XY = Z

isaso M-

L be map where
hY—=2 and V' — Zand

Definegr .'X'- X X 17 Zas

Ro(fs X f2) = go 0@ X a’) o
that

94Xy =2 _g:X—~2, Ff
are M- Cofibration

I}’—FZ

Then there exist a homotopy it
ho = h 4R:0f1 = g:

with
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and ahomotopy lp V= ‘Zwith o =n
and'”'—“ Gf‘_ = G:
Now for e VXY = Zdefineas

heo(fi X i) =90 ghe = I
Xf XXX =Y XY

Therefore — —

Cofibration Proposition 3-4:-The M-

pullback of M- COfibration isalso M-

COfibration

Proof:- let /! V=2

|5

isM-

and.-t:}'—Z

homotopy'g ek =2

hof, = g,oa

.Defin a
such that
. sincef has M-cofibration then

there exis a homotopy M V=2
ho = h 4h:0fi = g:

with

Defin It X'y = Zsuchthat
h'of,"=go'oa’' , ,9:"= g:0L
then there exis a homotopy h‘-‘ Y= Zwith

ho'=h 4he'0fi"= g;
f:X'-=Y

Therefore— ~ has M-cofibration
M- Hurewicz Cofibration

Definition 4-1:- the {X’ f' Y, {T} be a M-fiber

structure over Y ,we say that — is M-Hurewicz

Cofibrationifffhas(M-LHP) w.r.t all spaces
f:X-Y
Proposition4-2:- let — and

fr: ir — }.'
- betwo M —Hurewicz Cofibration
FXF-XXX =YXV

then— —
Hurewicz Cofibration.

A

Proof:- let = be any arbitrary space
Let Y XY = Zbemapwhere
hY—=Z _  hiY' =2,
oetine 9 Xs X X'y = Z
ho(f Xf2) = go o(a X a’)
that

94X =2 _g:X 2, [f

are M- Hurewicz Cofibration

isalso M-

Then there exist a homotopy M V=2 with

ho =h _4h:0fi = g:

and ahomotopy lp V= ‘Zwith o =n

and hr rﬂf‘_ = g

Now for My ¥ XY _'Zdefineas
heo(fy X i) = gy ho™ = I

SinceZ be any arbitrary
FXF:XXX =Y XY

Therefore — —

Hurewicz Cofibration

Proposition 4-3: The M-pullback of M-
Hurewicz Cofibration isalso M-
Hurewicz Cofibration

Proof:- let Z be any arbitrary space, let

htY' =2,  h:Y =2

isM-

.Defin ahomotopy

ge: Xy = Zsuchthat hof, = 909% gnce
f has M- Hurewicz cofibration then there exist a
homotopy h?: Y =12 with ;3‘3 = T and
h.of; = g:
Defin e :X"- - Zsuchthat
h'of,"=go'oa' , ,9:" = g:0L
then there exis a homotopy hf 2 Zwith
ho'=h 4he'0fi"= g;
since Z be any arbitrary space

fiX =Y
Therefore — has M- Hurewicz
cofibration
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