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Abstract: The aim of this paper we have define the group of units U(F(G)), where F(G) is the group
algebra with G isfinite group over afield F. Now if char F=0 and G nonabelian or F is a nonabsolute
field of characterstic P > 0 and G/ OP (G) is nonabelian, then it is well known that the group of unit
U(K[@]) contains a nonabelain P-group.There for we will prove that there are two cyclic subgroups X

and Y of G of prime power order and units uX | U(K[X]) and uy |
contain nonabelian P-subgroups in linear group.

U(K[X]) such that (uX,uY)
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Introduction

Let K[G] denote the group algebra of
a finite group G over a fied K. In this paper
we are concerned with the existence of
nonabelian p-subgroup of the group of units
U(K[@]). For convenience and following [4]

we say that an arbitrary group J is2-reated
if it contains no nonabelian p-subgroup. Thus

J is 2rdaed if and only if every
homomaorphism from the 2-generator p-group

VZinto J has nontrivial kernd and hence if

and only if every tow eements of J ae

related that is satisfy a nontrivial word in VZ.

Obvioudy the property of being 2 reated is
closed under taking subgroups and
homomorphic images.

If G is a bdian then U(K[G]) is
commutative and if G/ OP (G) is abelian
where char K= P >0 and OP (G) isthe largest
normal P -subgroup of G then U(K[G]) is a
solvable since the kernel of the natura
homomorphism K[G]— G/ OP (G) is a
nilpotent ideal. Furthermore if K isan absolute
field that is algebraic over a finite field then
U(K[Q@]) is a periodic group certainly in all of
these three situations U(K[G]) cannot contain a
nonabelian p-group and consequently it is
2 related on the other hand if K[G] dose not
satisfy the above then U(K[G]) dose contain a
nonabelian p-group. For the most part this
result of [2] follows from the fact that GL2(K)
contains such a p-subgroup. See [5] for
analogous problem in integral group rings.

If G has a nonnormal subgroup then
specific  generators for a nonabelian p-
subgroup of the unit group of the integra
group ring Z(G) were given in [9]. A similar
result for group algebras in positive
characteristic can be found in [3]. In this paper
we consider units of a different nature namely.
Definition 1.1. Let K[G] be the group
algebra of g over a nonabsolute fidd K, and
let X=«> be cyclic subgroup of G of prime
power order. Then we say that ux | U(KX])
is special unit depending upon the generator x
if one of the following three conditions is
satisfied
1. char K= 0,1X1P >0 and ux=(x-r)(x-s) for
suitableintegersr,sI ZI K with r,s3 2.
2. char K=P >0 Xiis prime to P, and
ux=(x-r)(x-s) for suitable rsl K that are
positive powers of a fixed element tl K
transcendental over  the  subfied
KO=GF(P ).
3. char K=P>0 X is a P -group and

wx=Lt(Lex+. . +x" ) where tl K s
transcendental over KO.

4. In part (ii) and (iii) above we say more
precisaly that ux is special based on t.
Using this notation our main result is.[4]

Theorem 1.2. Assume that we say

char K=0 and G is nonabelian or that K is a

nonabsol ute field of characteristic P >0 and G/

OP (G) is nonabelian. Then there are two

cyclic subgroups X and Y of G of prime power

order and two special unitsuX | U(K[X]) and
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uy!  U(K[X]) (based on the same reselected

transcendental element if char K>0), such that

<ux,uy> isnot 2_related. [8]

Corollary 1.3. Assume that either char
K=0 and G is nonabdain or that K is a
nonabsol ute field of characteristic P >0 and G/
OP (G) is nonabelain. Then the subgroup of
U(K[G]R generated by units of the form x-r
with xI G and rl K has a nonabelian p-
subgroup.[8]

Definition1.4. A group G issaid to be
ap-group if the order of each element of Gisa
power of afixed prim p.[2]

Examplel.5. Any group of order pn (p
prime) is p-group since the order of each
element must divide the order of the group. In
particular the group of symmetries of squareis
p-group where p=2.[2]

Examplel.6. Let G be a commutative
group and the set H consist of those element
whose order are powers of a fixed prime p
(quite possible H {e ). Then H forms
subgroup of G which by its definition a p-
group.[2]

Lemmal.7. If G isfinite commutative
group whose order is divisible by a prime p
then G contains an e ement of order p.[2]

Corollaryl.8 Let G be a finite
commutative group and p prime dividing o(G).
Then G has subgroup of order p. [2]

Theorem1.9. Let G be a finite group
and let P be a fixed prime. Suppose that G/
OP (G) is nonabelian but that H/ OP (H) is
abelian for every proper subgroup and every
proper homomorphic image H of G. Then we
the following two possibilities.

5. (The p-group case) G is a p-group with p
# P its center Z(G) is cyclic of index
p2and | G'|=p. Furthermore either 1GI=p3
or G=X xY where X iscyclicand 1Y |=p.

6. (The Frobenius case) G=AxX where A is
on eementary abelian g-group with the
prime q different from P, X is cyclic of
prime order p # g and X acts faithfully
and irreducibly on A.

Proof: (i) It is clear that OP (G)=1.
suppose first that Z(G) # 1 and choose Z to be
a central subgroup of prime order p. Since
OP (G)=1 we havep #P and it follows easily
that OP (G/Z)=1. Hence G/Z is an abelian P -
group by hypothesis. Thus G is nilpotent of
class 2 and Z=G' . In particular Z is unique so
Z(G) must be a cyclic p-group, and since G
nilpotent we see that G is a minimal
nonabelian p-group and by [9] either|GI=p3 or
G = XxY with X and 1Y |=p.

(i)We can now assume that Z(G) =1
and in particular that G is not nilpotent.

Suppose next by way of contradiction that G is
simpleand let p#P be prime divisor of 1GI. If
P is any nonidentity p-subgroup of G then
NG(P) is proper and therefore has a normal p-
complement by hypothesis. Frobenius theorem
(see [6] ) now implies that G has a hormal p-
complement and this contradicts the
assumption that G is simple group that not
nilpotent. Consequently G is not simple and we
conclude from the hypothesis that G is
solvable.

Finaly, let A be a minima normal
subgroup of G. Then A isaelementary abdian
g-group for someprimep#P and A iscentral.
In particular we can choose x| G to be an
element of minimal order not centralizing A.
certainly x has prime power order say IXI=pn.
Note that the group< A,x> has nontrivia
commutator subgroup contained in a so G =<
A, x> by hypothesis. The minimal natural of Ix|
now implies that xpI Z(G) =1 and hence X =«
x> iscyclic of prime order p. Clearly G= AxY
and since A is a minimal normal subgroup of
G.

we conclude that X acts faithfully and
irreducibly on A.

Aswe will see the p-groups above are
fairly easy to handy but the Frobenius group
work is much more difficult. The proof of our
main theorem uses techniques from [4].
However the objective of that paper was
somewhat different from the problem here. In
particular since we were not concerned with a
precise description of the unitary unitsin K[G]
we were able to finesse a serious study of the
Frobenius group G= AxY in [4]. Here we have
to come to grips with the representations
theory of such groups. Surprisingly there are
interesting open questions concerning these
representations especialy  in positive
characteristic. We start with a few simple
properties seg[7] for basic information on this
subject. We do have to be a bit careful below
to alow for posshbility that p is the
characteristic of K.

Lemma1.10. Let G= AxX where A is
an eementary abelian g-group, X is cyclic of
prime order p and X acts faithfully and
irreducibly on A. Let K be a fidd of
characteristic #q and assume that K contains a
primitive gth root of unity.

7. |If m: KA ® K is a nonprincipa
linear character of A, that is a nontrivial
one-dimensional character then the

— G
induced representation =M s an
absolutely irreducible representation of
K[G].
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Conversdly if d isanonlinear irreducible
representation of K[G] and if

M K[AI® Ko congituent of the

—_ G
restriction 94 then u#1 and q=m
In either situation, 9 isfaithful on the

group G and deg9 =p, Furthermore, 4 is
injective on the group ring K[X] and by

conjugating if necessary we can assume thatd

(@)=diag(u(e), pex),..., wax") for all
al K[A]

Proof: Since G= AxY is Frobenius

group, X acts in a fixed-point-free manner on
the dual group of A. Thus each nonprincipal

X .
character of K[A] has p:| | conjugates under
the action of X.

0.

10.

m:K[A|® K

Let be nonprincipal

— G
character and st =™ Then degd =p
and 0A=p1+p2+...+up isthe sum of thep

distinct conjugates of . If Y is an
irreducible sub representation of 9 then

Y A must contain some pi and hence it
contains the entire X-orbit of . In
particul ar we have

p=degq * degy * p,so g =y

Conversdy, letd be a nonlinear
irreducible representation of K[G] and let

1 be irreducible constituent of d A. If p=1

then G=A! kerd and Qis linear a
contradiction. Thus p£1 and hence by (i)
above PG is irreducible. In particular

sinced is quotient of (4 A)G and since
the latter is direct sum of copies of uG, we

conclude thatd = pG, as required.
The remaining observations follow from
the definition of induced representation
and the fact that A= G' is the unique
nontrivial normal subgroup of G.

FROBENIUS GROUPS

As we indicated in the introduction our
proof relies on certain special case
considerations. Indeed the p-groups are
easy handle while the Frobenius groups
are much more of a challenge. The
following result is well. Known. We
include it here as motivation for later
work.

Lemma 2.1. Let G be a nilpotent group of

o 0 KIGI® M, (K) |
absolutely

class<2 and |

G-faithful irreducible

representation. If T istrivial for Z(G) in G.
thend (T) is a K-basis for Mn(K) and
hence n2:|T|:|G : Z(G)| .

Proof : Sinceld absolutely irreducible
d (K[G])=Mn(K). Now for esch gl G, Iet
C (g | K be the matrix trace ofd (g).

c:G®K is the character of G

withd.  1f gl z©)
thend (g)=Ml isa scalar matrix and hence

1@)=an. 1f gl Z(G) then since G has
class <2, there exists x| G with x-1gx=gz
for some 127l Z(G).
Thus 6(x)-16(9)6(x)=6(9)6(2)=16(9),
where 6(z)=pl, and p #1 since z#1and 6 is
faithful. Taking matrix traces and using
the fact that similar matrices have same
trace we obtain y(g)=0 In other words, y
vanishes off Z(G). Now all matrices in 6(
Z(G)) are scalar so it follows that 6(T).
spans Mn(K). Furthermore since there are
matrices in Mn(K) with nonzero trace, we
see that y cannot vanish on G and in
particular we have n£0 in K. Finaly

a k,a(9)

suppose 9T =0 is linear

associated

irreducibl edependence relation for 6(T). If x| T then

multiplying this equation by 6(x-1) and
taking traces yields kxn=0, sine gx-
1l Z(G) if and only if g=x. Thus kx=0 for
al xI T and o) is K-linearly
independent as required.

Next we consider the necessary Frofebiuns
groups. Specifically, let G=AxX, where A
is an elementary abelian g-group X=<x> is
cyclic of prime order p, and X acts
faithfully and irreducible on A. Assume
that K isafield of characteristic different
from p and q and that K contains a
primitive (pg)th root of unity. We fix this
notation throughout the remainder of
section.

If 6 is a nonlinear irreducible
representation of K[G], then by lemma
110, 06 is faithful on G and
0(K[G])=Mp(K) has dimension p2. In
analogy with lemma 2.1 it is appropriate
to ask whether there is a natural basis for
this matrix built from certain group
elements. For example if 1zal A then
Y=aXa1isacyclic subgroup of G of order
p digoint from X. Thus XY is a basis for
Mp(K). Asit turns out thisindeed the case
if either char K=0 or char K ispositiveand
sufficiently there exists an appropriate



K[G] such that for all 6 and X,Y, the set
0(XY) isabasisfor the matrix ring.
Returning to the general group G, we
know that 6(K[G]) may be taken to be the
set of diagonal matrices in Mp(K) and
hence this image has dimension p. On the
other hand each nonidentity G-conjugacy
class contained in A has size p and we ask
whether there exists such a class Aa with
0(Aa) a basis for the diagonal matrices.
This question turns out to be precisdy
equivalent to the preceding one and hence
has the sam positive and negative.
Fortunately we are able to partially finesse
the negative answers and prove a result
just strong enough to enable us construct
the unit we require.

We now start the formal considerations.
Since X actson A it also acts on K[G] and
for each linear character

I KIXTI® K e define the a-trace
tr, : K[A]® K[A]
map given by

ra=fl(cha’ =

i=0

to be the K-linear

-1

o

" QYo

0

Basic properties are as follows.
Lemma 2.2 With the above notation we
have (trio)x=A(x)trAa and

-1 -1
tr,a)(tr,b) = & | (")t @*b) = & mx *)tr, ,@b*).
k=0 k=0

Proof: For thefirst fact note that

(tra)*=3 1 (xHa" =1 (! (x"a" =1 (xtr,a.

Foe the second write i=j+k and observe
that

(tra)r,b) =& 1 (< mx)b* =Z 1 (x™*)mx )a*"b*
ij jk

=41 ) QI mx H@*b)* =41 (x“)r,@*b)

The third formula follows from the above
by interchanging the factors.
Now suppose p:K[X]—K is a linear
character. Then the idempotent e|,l| K[X]
associated with L is given by

1% 18"
& =@ mx')xX =3 mx)x".
p|=0 p =0
Indeedvvehave
-1
7a n.(x )X|+1 :%5 IT( -| 1) i+l n.(x)e
i=0 i=0

The basic relation between these
idempotents and A-tracesis as follows.

I (x)ax for allal K[A].
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Lemma 2.3 Let pn:K[X]—K be linear
characters and let o K[A]. Then

ea s, =%(trI a)e, =%em(trI a) wherel =mh.

Proof: To start with we have

18"

e,ae = Eam(x)x aen‘fam(x)x axx'e
i=0

15"

Ea m(x)h(x")x"a x' g,

i =h (x' .
Since X q“ h( ) G Thus
setting A = nu-1 we obtain

€ a%—gal (xHa* %——(tfl a)e,.

i=0

The second formula follows in a similar
fashion.

Recall from lemma 1.10 that every
nonlinear irreducible representation 6 of
K[G] has degree p. Furthermore according
to that lemma we can always assume that
0(A) consists of diagonal matrices.
Lemma 24 Let 6 be a nonlinear
irreducible representation of K[G] and let
HK[A]-K be a constituent of the
restriction 0A. If ol K[A] then o(traa) is
either zero or an invertible eement in
Mp(K) =6(K[G]). It is invertible if and

Bl i
al (x)Ym@*)o.

only if =0

Proof: Since trk o commutes with A and
since(trk a)x = MX) trh o we see that
o(traa) Mp(K) is two-sided ideal of the
matrix ring Mp(K) = 6(K[G]. With
thisit is clear that 0(trAa) is either zero or
invertible. Furthermore since 6(trAd) is a
diagonal matrix it isinvertible if and only
if its (1,1)-entry is not zero and according
to lemma 1.10 this entry is equal to

Bl i

al (xHma*)

i=0

We can prove the equivalence of the

various problem.

Lemma 25 Let 6 be a nonlinear

irreducible representation of K[G] and let

M be an irreducible constituent of 6A. Fix

1#al A and set Y=aXa-1. The following

are equivaent:

1. 0(XY)= 0(X) 6(Y) is a basis for
Mp(K)= 0(K[G]).

2. 0(Aa) is a basis for the diagona
matrices in Mp(K).

3. 0(tria) #0 for each M:K[X]—K.



Bl i
al x)Ym@*):ro

4, =0 for each
LK[X]—K.

Proof: We show that each of these

condition is equivalent to (iii) and note

that (iv)«(iii) from the previous lemma.

(ii) > (iii). If

xP-1

0(AD)={0(a).0(0)..... 9@ )} is k-
linearly independent then certainly
0(traa)#0 for each A. Conversaly suppose
that each 6(trA@)0 and note that by
lemma 2.2 each of these is an eigenvector
for the conjugation action of 6(x) with
digtinct eigenvalue A(x). Thus the various
0(traa) arelinearly independent and span a
K-vector space of dimension p. Since this
space is contained in the span of 6(Aa), we
conclude that the latter span has
dimension p and is equal to the set of
diagonal matricesin Mp(K).
(i) «(iii). Let pn:K[X]—K , let en bethe
idempotent of K[X] associated with p, and
let fu=aeua-1 be the idempotent of K[Y]
associated with n. Then, by lemma 2.3,

epfn=(epaen)arl =1l/p  (traa)ena-l,
where A =p-1n. 0 isfaithfule on K[X] and
K[Y], we know that 6(e) and 06(fn) are
not zero. If 0(X) 0(Y) islinearly
independent, then it follows immediately
that 6(ep) 6(fn) # O for al A, then since
0(traa) and 6(a-1) are invertible, we see
that O(ep) O(fn) # O for all pwm. The
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orthogonality of the sets{ eul al py} and {
i al n} now clearly implies that the set
{6(ep) 6(fn)1 al un} of sizep2islinearly
independent and hence spans Mp(K).
Therefore 6(X) 0(Y) aso spans Mp(K).
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