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ABSTRACT
We investigate the non-polynomial spline function to solve the fractional

differential equations with the conformable conjugate gradient method. The fractional
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derivative was described using the Caputo fractional derivative to construct the spline
scheme with polynomial fractional order. Therefore, transform the problem to an
equivalent iterative linear system that can be solved by Gauss-Seidel and conjugate
gradient methods. For the given spline function, error bounds were studied and a stability
analysis was completed, the error estimation is also calculated as different values of (n)
depend on the step size oh (h). Numerical examples with known analytical solutions are
shown to verify the method's accuracy. The outcomes are in satisfactory correlation with
the exact answers according to the numerical experiments. Moreover, the convergence
analysis was investigated with the drive some theorems. Also, the procedure is explained
in depth and supported by computational examples and the results show that the fractional
spline function which interpolates data is productive and profitable in solving unique
problems and compare with the exact solutions.
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Introduction:

Due to its numerous applications in science and
One of the most effective procedures for solving

large linear systems of equations is the conjugate
gradient method, which can also be applied to nonlinear
optimization. The linear conjugate gradient method was
proposed in the 1950s by Hestenes and Stiefel to solve
linear systems of equations with positive definite
matrices as an alternative to Gauss elimination. [17].
Fletcher and Reeves discussed the non-linear conjugate
gradient method in 1964.[18], Several modifications
have been introduced by researchers to the CG method,
such as (,[19])

Splines have numerous applications in physics

engineering, fractional calculus plays a vital role in a
multitude of fields including. materials modelling[1],
electromagnetism[2], processing of signals[3], ,diffusion
processes[4], fluid mechanics[5], electrical
engineering[6], mathematical economics[7]. A variety of
techniques have been invented to solve fractional
differential equations, such fractional finite
difference  method[8], Adomain decomposition
method[9], Adam-Bashforth-Multon method[10],

Homotopy analysis[11], matrix approach method
for solving FDE discussed in[12], fractional explicit
Adams method used in[13]Muhammad I. Bhatti and
Md.Habibur Rahman used B-polynomial bases to solve
FDEJ[14], discrete Prabhakar fractional operator studied
in[15], a spectral Tau method investigated by Hari
Mohan Srivastava and et al[16].

as:,

and engineering and many researchers have worked on
them. For instance, H. Justine and J. Sulaiman
constructed a cubic non-polynomial spline for solving
BVPs [20], The application of non-polynomial spline to
the numerical solution for the fractional differential
equation discussed in [21], a six degree spline was found
to solve second order initial value problem in [22] .
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In this study we consider the fractional differential
equation of the form
DYy +p(x)y" +q(x)y =r(x), x € [a,b] (1)
With boundary conditions
y(a) = By, y(b) = B, (2)
Where p(x),q(x) and r(x) are functions of x, B; and
B, are constants. Then the interval [a, b] is uniformly
divided into j subintervals and the length of intervals

defined as Ax =h=b];,a,n=j—1.

The structure of this paper is organized as follows: we
set some basic definitions and outcomes of fractional
calculus in section 2, construction of non-polynomial
spline function is presented in section 3, error
estimations and convergence analysis is in section 4,
finally some numerical examples are illustrated in
section 5.
2. Mathematical Preliminaries

There are various definitions of fractional derivative and
Taylor’s theorem, which used in this work, will be
presented in this section. The most common definitions
of fractional derivatives are Caputo and Riemann-
Liouville definitions.

Definition 2.1. [23] The Caputo fractional derivative of

order A > 0 is defined by

1 : . dm
le(t)=mj(t—f) A ldr—mf(f)df,

m—1<AiA<mEeN.
Definition 2.2. [12] The Riemann-Lioville fractional

order A>0 is defined by

D*f(t) L
fo= 'm—2A)dtm

derivative  of

_f(t—-ry“-l-lf(r)dn

m—1<A<meN.
Definition 2.3.[12]
integral  of

The Riemann-Lioville fractional
order A>0 is defined by

P = [¢ -0 fos

m—1<iA<mEeN.
Definition 2.4.[14] The Caputo derivative of order A of

a polynomial function x¢ is defined by D*x? =
r{d+1) d—2
rd-1+1)

Journal of University of Anbar for Pure Science (JUAPS)

85

Open Access

Definition 2.5.[24] The Spectral radius Y (4) where
A is an n X n matrix is given by

Y (A) = max (|A]) where 1 is an eigenvalue of A.
Definition 2.6.[24] An n X n matrix A is convergence
ifyY(4) < 1.

Definition 2.7.[25] A square matric A is called
diagonally dominate if

lail > Xizjlagjl.

Theorem 2.1. For any x; € R™ the sequence X
generated by conjugate gradient method converges to
the solution x* in at most n steps.

Proof. See [17].

3. Analysis of Non-Polynomial Spline Function with
Fractional Order
The new model of non-polynomial spline method is to
create a grid with step size x; and fractional order, and
also new conditions as the follows:
S(x) =S;(x),x € [x;, x;41], i=012...,n (3
Here the trigonometric spline function with fractional
order by assuming

Si(x) =a; + bi(x - xi)% +¢i(x —x;)
+ d;cosk(x — x;) + e;sink(x 4)
—X;)
Where a;, b;, c;, d; and e; are constants for,i = 0,1, ..., n,
and k is a free parameter.
The spline function S(x) interpolates y(x) depending on
k. To find the value of constants in (4) we supposed the

following conditions

1 1

) 3
Si(x) = yi, Sixip1) = yiz1, S () = y,?

Si(x;) = Dy, and, S{ (x;11) = Diy1. ()

)

Applying the conditions in equation (5) the value of all
constants in (4) obtained as follows
a; =

()

i

_\/E M1M3yi+1+\/7_l' M1M3yi+2\/ﬁ M1M3y
aMq

—(BM3+a)Di+(8M3+a)Di4q

—V2KkT MiMyyip1+V2km MiMayi+2 My (a+V20M,)

1
yi(i)—\/ﬁ(ﬂM2+a)Di+\/ﬁ(6Mz+a)Di+1
v aM, g

bi:
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1 1
c —\/EMlyi+1+\/ﬁMlyi+2\/ﬁMlyi(2)+(a—[i’)Di+6Di+1 S(E) (x)
i= a ) i-1
d; = ) k[ V2l My Myy; + V2R My My,
\/EM1M3Yi+1—\/EM1M3Yi—2\/ﬁM1M3yi(§)+(ﬂM3+“)Di—(5M3+“)Di+1 2 \/E aM;
aM,
i n vk (—\/ﬁ(ﬂMz+a)Di_1+m(6Mz+a)Dl-)
(1) 2 VraM, ’
L VI M1Yiy1 =T M1yi—2vVh M1y; ¥ +BD;~8Di41 8
¢ = ka ) Vk [ Vit MyM3y; — T MiM3y;_1 — 2V, ®)
Such that 6 = kh, M; = ksin@, M, = cos6 + sinf — Tt
1, M3 =cosf —1,
a = —2\nM; —20M, —\/mhM;, B = —/nM; + +
. 1
V26 - ﬁhMl, § =—VnMs ++26, i=012,..,n V& [ V7 My Mayios=23E M1y B gD -5
We obtain > ke
S()
6
_ —VIt MiM3y;,1 + VT M{Msy; + 2vh MMy~ —
aM, From here by equating equations, (7) and (8) we obtain,
+ Aryi + Apyioy + AsyS) + AuDiy + AsD; o)
—V2kr MyMyy; 4y + V2km MyMyy; + 2 My (a + V261 = 2k/maM,y”
Vi a
1 From equation (1),
— X2 . DVy; = =pi()y; — i(x)y; + 11 (%),
—VI Myy; 41 + VT Myy; + 2vVh Mlyi(i) + (a - p)D ©) DYy; 1 = —pi-1(0)yi1 — qi—1(x)Yi-1
+ a + ri—l(x)l
i1 — Vi 10
_xi)‘l' ’y{=y1+12hyl 1,and ( )
o Yoy = —YVir1 4y —3Yi1
1 i-1 =
VI My Msyieq = VT MyMsy; — 2VR My M3y, > + (BM 2h

L

aM,

iterative formula as finite difference equation

Substitute equation (10) in equation (9) to obtain the

—x;) +
' @) a;yi-1 + biyi + ¢iyiv1 = Fi (11)
VIt Myyiy1 =T Myyi=2Vh Myy;?’ +BDi=6Di4q sink(x — x;)
ka e Then the system of linear equation is formulated from
equation (11) as follows
. o .. Ay =F (12)
Now apply the fractional continuity condition of the Where
spline function S;(x) where the splines, Sl.(inl) x) = b ¢ 0 0
) L e e
§7(x), m= > 1, we obtain the following equations a, b, ¢, 0 0
1 1
D@s;(x) = D@y, (x) (7 A= 0 @ b .
. . . . . . 0 2
O cee O an—l n—1 cn—l
o0 - 0 a, b, |

[V1 Y2 ¥3 - Yn-1 Ynl”,
F=[F—-ayyyF,..Fy_1 E, — Cnyn+1]T~
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Such that
3p;_ 34, + Ac
o=y + (Gt = a4~
VrkaM;p;
h ’
24.p;_, 24
by = A, — % + =2 4 2VTkaM,q,
o = Aspiq N As — A, " \/EkaMﬂ’i
' 2h 2h h ’

F; = 2\mkaMr;(x;) — Asri_1(x;), i=12,..,n.
Ay = —ZkanM; M, — 4ThEM2 +
Zk%anM3 cos (9 + %) + 2nVkMZsin (6 + %),
Ay = NZkamM M, + WTREM2 — 2kzmM, Ms cos (6 +
%) — 2nVkM?sin (6 + %),
As = 2kvnM, (a + V20 M,) + 80M7 —
4mBlM; M; cos (8 + ) — 2vBnMEsin (0 +5) .

Ay = —k;/ﬁ(a + BM,) + 4kvVhM, (a — B) +
2vikia (e + BMs) cos (6 +%) + 2vknM,Bsin (6 + ),

As = kaVZT(a + OM,) + 4kVAM, S — 247k (a +
§Ms) cos (6 + %) — 2VkrM, 8 sin (6 +73).

Theorem 3.1: If A is diagonally dominate then for any
initial vector x(® the sequence generates by Gauss-
Seidel method {x(i)}zo convergence to unique solution

of Ax = b.
Proof: see [24].
Theorem 3.2:
is non-singular, A™1 exists, and Au = f has a unique

If A has n independent columns then A

solution u.

Proof: see [26] and [21].

Theorem 3.3.[23] Letp € (0,1],p € N, and f(x) be a

continuous function in [a,b] satisfying the following

conditions

(1) D/Pf(x) € C([a, b])and D?f (x) € I([a, b]), V) =

12,..,p.

(ii) D®P*+DP £(x) is continuous on [a, b].

Then for each x € [a, b],
DIPF(a)(x—a)iP

fOo) = B R

R, (x,a) = DP*VP £ ()

+ Ry, (x, a), where
(x—a)PtDp

W) T a<n<
r((p+1)p+1) ASNS X
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4. Error Estimations and Convergence Analysis
Theorem 4.1: Let S(t) be the unique non-polynomial
fractional spline satisfying in (4), for a given function
y(x) € C5[a,b]. Then the following error estimates hold:

st (x) — FW ()| < If©|, where a€R

hm+ot

(2m-2)!
and

le™ @) = [FM™ () — S ()],
maXp<y<h |f(2n) (x)|

Proof: By subtracting the analytic function y(x) of

and,w =

sufficiently high order with the spline model in equation
(6) and using theorem 3.3, we obtain.

Since D%s (x) is Hermite interpolation polynomial of
degree 3, and matching Déf(x),D%f(x), at X = Xj, Xj4q
so for any x € [xj, x]-+1], using ([27],[28]) and let

) )
m=3,g = f\2/ and p; = s\2/(x), form the non-
polynomial spline function in equation (4), with known

constraint conditions; we get:
|D§s(x) — D%f(x)| < Z—T ID® f(x)], also if we put
3 3
g = D2f(x) and P; = Dzs(x), we get
) ) LATNG
s@)(x) - flz (x)‘ < - [D@f(x)], then
6
5() = 5(0) + F(0) = F| S = I fO@) I

Since s(0) = f(0) and x € [0,1] then the last equation
becomes

7
E
<N O I,

and since f®)(0) = 0,p = 1,2, also using [23], clearly
find the error estimation as follows

s(g) (X) — f(;) (x)

following:

- _ _ TPIE))
i, let{=0,m=4,thenle(x)| < IF@._ .
11. let(=1m=4,

7
“rewl..

then| e(%) (%) | <

iii. let{=1m =4, then le'(x)] <
h6
alF@I.,

‘ ; 8

iv. let ¢ = S m= 4, then e\z)(x)| <
hS
s IF@®I.,

v. let{=2m=4, then le@(x)| <

4
SrO@.
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5. Numerical experiments solution solution

In this section the method applied to solve two o1 0.098 0.0973670 6.5x 1074
numerical examples of boundary fractional differential g 0.7071 0.7031279 3.9 x10-3
equations with constant coefficients, the result compared T

. . . . — 1 0.9957816 4.2x1073
with the exact analytical solution to show the efficiency 34
of the method. The computational programs were ?n 0.7071 0.7062436 8.6x107*
written in MatLab. Here the algorithms of the Gauss- g 0 0.0038903 3.8 x 10-3
Seidel and the conjugate gradient methods are presented.
Algorithm 5.1
Suppose that we have the linear system (12) where A is —
symmetric positive definite matrix for Gauss-Seidel oal N
method first decompose matrix A as A = D+ L+ U _ =
such that D is diagonal matrix, L is lower matrix and U ©z F
is upper matrix. Then the Gauss-Seidel algorithm can be el \\\ 2 ?

O

written as:

Start with initial vector y(o).

y&D = —(D + L) 'Uuy® + (D + L)7'F,i
0,1,2,....

Algorithm 5.2 (conjugate gradient method)
Chose yy € R" and put, dy =1y = F — Ayy.
Fork =0,1,2, ...

Ifdy = 0,stop yy is solution of Ay = F.
Otherwise Compute

oa |

os

o4

oz

S w0 bW

t
_ T Tk _ d Figure 2 Exact and approximate solution of example 5.1 with h = -
ak——thd v Yr+1 = Vi T apdy, 128
k k
¢ Example 5.2. A boundary value problem of FDE
_ Ad _ Tk41Tk+1
Tiey1 = Tk — QAdy, Pr = i
T Tk

Ai+1 = w1 + Prdi
Example S5.1. Consider the fractional differential
equation
y' +y*+y = 2sin2x + 3cos2x,

€ [0, 7], y(0) = y() = 0 (13)

3
y’+y=x2+x+§\/%—2\/§—1+y“,xe

[0,1],¥(0) = 0,and y(1) = 0.

. . 1. .
The exact solution with @ = S isgivenas, y = x% —x.

The iteration numbers is present in Table 3

Table 3 iteration numbers of example 5.2.

. 1. .

The exact solution of (13) when a = S I,y = sin2x. Number of iterations

Table 1 shows the number of iterations with different l 64 128 256
.. . . . GS 220 1607 7838

value of j using Gauss-Seidel and Conjugate gradient cG 63 127 255

methods.
Table 1. lteration numbers of example 5.1.

Table 4 Exact, approximate, and absolute error of example

Number of iterations 5.2
i 64 128 256 x | Exact solution Apsl:) Ii?l’t‘il::late Ale)::(l::te
GS 161 687 6962 1 ]
G 63 27 255 4| 001538 | —0.0134754 | 1.9x10
% —0.1093 —0.0982452 1.1x 1072
Table 2 Exact, approximate, and absolute error of 1 i
example 5.1, 2 | 01875 | -0.1772538 | 17x10

| x | Exact |Approximate| Absolute error |
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% —0.2343 —0.23071 3.6 x1073
1
2 —-0.25 —0.254126 4.1x1073
' \ o /
0.05 ‘\‘\ ———ca /
\ /
=15 //
0.2 \\\\\ ’///// 2
0.25 \\\\'77, =

1
256

Figure 4 exact and approximate solution of example 5.2 h=

Example 5.3.[29] Consider the fractional differential
equation

x37% 4+

a — _ 4_1 3 _ 3
D%y(x) = —y(x) +x 2 T e
4

4—a
l“(&;_()[)x 0<a<1.

With boundary conditions, y(0) = 0,y(1) = %, and x €

[0,1].
. . 1. 1
The exact solution with a = S8,y = x* — 5x3.

Table 5 Iteration numbers of example 5.3

Number of iterations

J 1000
CG 999
GS 19710
Table 6.Exact, approximate, and absolute error of example
5.3.
X Exa.c t Approx'l mate Absolute error
solution solution
0.1 -0.0004 -0.00011694 2.8x107%
0.2 -0.0024 -0.000194 2.2x1073
0.3 -0.0054 -0.00003 5.4x1073
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0.4 -0.0064 0.00140836 7.8x1073
0.5 0 0.00647904 6.4x1073
0.6 0.0216 0.02230459 7.0x 107*
0.7 0.0686 0.06383659 4.7%x1073
0.8 0.1536 0.15236168 1.2x1073
0.9 0.2916 0.30210056 1.05 x 1072

6. Conclusion

This paper developed the trigonometric spline
method for solving FDE and conformable with
conjugate gradient methods. The findings with the non-
polynomial quartic spline functions are really quite
interesting. In approximating functions, the non-
polynomial spline and conjugate gradient approaches are
more adaptive, as seen in the numerical examples. The
graphs comparing exact and approximate solutions for
method's

numerical demonstrate

superiority.

examples our
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FDES Jal ¢ ikall il Ak ga dbenall L5l (bl A1)

ol Olada dles , (33l sy JUE ,  plla das I8 Ogah
Gl sy o malileAilanbuadlediladdl daslaedanill S ccluals )l pnd
Gyl s 5S il Aibaslialle Alaslial) daalane Gl A5l IS ccilaaliyll and’
lall= sy aliledilanldlediladad) daalae dujill LIS ccilualyyl) and’
1Al
Gdiall Chag o L salaal) (88l oyl il aladiul Al Lbialal) c¥aleadl Jal agasdl sadaie pe ol Al & G el
s ¢ b ¢ a5yl agaal) Baraie EBlalae aladinly dadll clioul) O s ( Caputo )iially Al JalSill alasiuly (5l
Ay G Bl Aspdll dpdagl il LG8 £yl Bylay  ((Gauss-Seidel ) ddauls als (Ka (A ) s ol ) A
Jsla g dpaae Al (mje @3 .(h) Behadll aas o adied (N) J ddide a8 (Y Bl Wagl Uadll 5 s g ¢ cldl) Jalas JaiSly Uadl) ag0a
s 3 a5 0 elly e sdle Anaall Colatll g 4580 ClLlaY) pe daaye Al b pilll culS AR A8y (ge (3Ratl Adg jea dibilas
davie bl pad ) Adiall daydl) didag of b jediis Aulua Alial dacdy Gams el ¥) 28w ¢ Lol L il (e S ae )il

A8 Jlally g lies sadll COISEA Ja 3 dasgag
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