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ABSTRACT

The Emden-Fowler equation (E-F.EqQ.) used in mathematical with other
science like physics, chemical physics and astrophysics, also this equation can be
reduces to the Lane—Emden equation with specified function and used it in
different sciences with mathematics. Many Authors study analytic and numerical
methods to find the solution for this kind of the equations in the case linear or
nonlinear one of these methods the homotopy-perturbation method.

In this work the approximate solution for generalized (E-F.Eq.) in the
second order ordinary differential equations was found by Galerkin method
which is one of the weighted residual methods and do not need long time also
use operator (linear or nonlinear) or differential operator in the any kind of the
intervals and compared this solution with the exact solution by discuss the
results from applying this method for homogeneous and nonhomogeneous
equations and drown the solutions in the same figure to illustrate the results.

1. Introduction:

In  mathematics,

in the field of applied

Y'+2y +af(x)g() =0, x>
0, with y(0) = a and y'(0) =0, (%)

mathematics, a great interest in numerical solutions
emerged in the last century. Many methods appeared
to solve initial and boundary value problems that are
difficult to find an analytical solution . Some of these
methods have gained wide fame either ease of use or
for their efficiency compared to similar methods such
as iterative methods like in [1 ], [2 ], Homotopy-
perturbation method [3], Runge- Kutta method
[4],Galerkin method[5],[6] which is the subject of
study here. We used it to solve the Emden-Fowler
equation (E-F.Eq.).

In [7] and [8] study the initial value problems
of (E-F.Eq.),

*Corresponding author at: Department of

where a is a fixed, f(x)and g(y) are given
functions.
The problem of find the approximate solution for the
equation (*) and compared that solution with the
approximate solution by homotopy-perturbation
method studied by [3].

2- Main Notions
u(x) is approximated solution in the weighted-
residual method by

u(x) = Uy (x) = ch(l)j(x)"'q)o(x)

The residual of the approximation is
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N
R=S0> c(X)+d(x))—h =0

j=1

where S is an operator linear or nonlinear.
iq
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The notion
residuals as follows

[ROOWAX =0 (j=1.2....n)

in the methods of weighted

Anywhere numeral weighted functions W; =
numeral of the constants c;, [9], [10].

In [6] Abd Almajeed surveys the steps of this
method to find the approximate solution of the delay
differential equations that in [11].

3- Application Examples
Example (1):

In [12] Ramos gave the exact solution
n=m"—m?® for the linear, nonhomogeneous (E-F.Eq.)
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n"+§n'+mn=m5—m4+44m2—30m, n(0)=0 and n'(0)=0

W
To find the approximate solution we apply the same

steps in [6]
R(m) :n”+§n'+mn—m5+m4 —44m* +30m
m

Suppose  fi(m) =a, +a,m+a,m’. So from the

conditions we get a, =0

i'(m)=a, +2a,m - Also from the conditions we get

ﬁ"(m) — 2a2 a, = 0

= W:ﬁzl&-m3

R(m)=18a,+a,n’~n’ +m* - 44n’ +30m p
aZ

10 10
IWR (m)dm = J.(18+m3)[18&12 +a,m° -m’ +m" - 44m? +30m]dm
1 1

: - 3366889547
Implies after reduce above integral, a, = ———

47334880
So the approximate solution is

~ _ 3366889547 2
a(m) = 47334880
Similarly we can apply those steps if we take

other intervals.

Example (2):
Apply the steps in [6] to find the approximate
solution for the nonlinear, homogeneous (E-F.Eq.)

k"+§k’+18ak+4aklnk:0 ,

m

The exact solution is k(m) = g [13].

k(0)=1 and k'(0)=0

201
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As in [6], the steps for find the approximate
solution are

R(m) =k”+§k'+18ak+4aklnk
m

Suppose k(m)=s, +s,m+s,m*. So from the
conditions we get s, =1

Also from the conditions we get s, =0
k'(m) =s, +25,m K'(m) =2s,

R(m)=18s, +18a +18as,n’ +4aln(l+s,n’ ) +4as,n’ In(l+s,n")
oR 8am 2

W=-—=18+36am+ —+4as,n A2+8amln(1+szm2)
0s, (L+s,m") (L+s,m

1

1
[WR(n)en = | (8+36an+ 2" gasnt 2" iBanh(Lesa)
0 0

(1+s,m°) (1+s,m%)

[18s,+18a+18as,n’ + 4aln(l+s,n”) + das,n’ In(L+s,n°) [dn

Implies after reduce above integral with equal

zero right side and assume a=1 we get:
__145625
246078 °

S, =

So the approximate solution is k(m) =1+
145625
246078

Similarly we can apply that steps if we take
other intervals.

4- Discuss the Results and Conclusion

In [3] Chowdhury and Hashim find the
approximate solution for the above examples but not
drawn these solutions. In this section the compared
between these approximate solutions and exact
solution drawn in the same figure.

For example (1), the exact solution is up(X) = x* —
. . .o 3366889547

x3and the approximate solution is #i(m) = =———
47334880

m’
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So the following figure shown these solutions

8000

= N_approximate

n_exact

10

2
For example (2), the exact solution is k(m)=e"

. . .~ 145625
and the approximate solution is k(m) =1+ —
246078
IIl2
So the following figure shown these
solutions
1.0
0.9
0.8
o7 )
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