Strongly C-Lindelof Spaces

Fawzi Noori Nassar

University of Anbar - College of Education for Pure Sciences.

ARTICLE INFO

Received: 5 / 2 /2012 Accepted: 18 / 6 /2012 Available online: 29/8/2013

DOI: 10.37652/juaps.2012.82138 **Keywords:** Lindelof,

Strongly Lindelof, C-Lindelof Spaces.

ABSTRACT

In this paper, we define another type of Lindelof which is called strongly c-Lindelof, and we introduce some properties about this type of Lindelof and the relationships with Lindelof, c-Lindelof and strongly Lindelof spaces.

Introduction:

A topological space (X,τ) is said to be Lindelof space if and only if every open cover of X has a countable subcover [1]. A topological space (X,τ) is said to be c- Lindelof if and only if each closed set $A\subseteq X$, each open cover of A contains a countable subfamily W such that $\{\operatorname{cl} U:U\in W\}$ covers A [2].Mashhour et.al.[3] introduced preopen sets, a subset A of a space X is said to be preopen set if $A\subseteq \operatorname{int}(\operatorname{cl}(A))$.Also they defined the following concepts:

- 1. A is called a preclosed set if and only if (X A) is preopen set.
- 2. The intersection of all preclosed sets in X which contain A is called the preclosure of A and denoted by pre cl A.
- 3. The prederived set of A is the set of all elements x of X satisfies the condition, that for every preopen set U contains x, implies $U \setminus \{x\} \cap A \neq \emptyset$.

A topological space (X, τ) is called strongly Lindelof space if and only if every preopen cover of X has a countable subcover [2]. In this paper, we introduce the concept of strongly c-

$$\begin{split} X &= \bigcup_{i \in \Delta \subset \mathbf{N}} \left\{ \operatorname{cl} U_{\alpha_i} : U_{\alpha_i} \in W \right\}. \text{This means ,there is} \\ x &\in X \text{ such } \quad \text{that } \quad x \in \operatorname{cl} U_{\alpha_i} \text{ ,but } \quad x \not\in U_{\alpha_i} \text{ for some } i \in \Delta \subset \mathbf{N} \,. \end{split}$$

* Corresponding author at: University of Anbar - College of Education for Pure Sciences.E-mail address:

Then $x \in U'_{\alpha_i}$ where U'_{α_i} is the derived set of U_{α_i} . Since X is a T_1 - space then $\{x\}$ is a closed subset of X and since $x \notin U_{\alpha_i}$, then $y \notin \{x\} \ \forall \ y \in U_{\alpha_i}$, $i \in \Delta \subset \mathbb{N}$. By regularity of X, there are two open sets V_y and V_y^* such that $y \in V_y$, $\{x\} \subset V_y^*$ and $V_y \cap V_y^* = \phi$ for each $y \in U_{\alpha_i}$. Now, put $V = \bigcup_{y \in U_{\alpha_i}} V_y$, then V is an open set contains U_{α_i} . So we have V_y^* is an open set containing X such that $V \cap V_y^* = \phi$, therefore, $X \notin U'_{\alpha_i}$ which is a contradiction. Then X is Lindelof

space. Lindelof space. A topological space (X, τ) is called strongly c- Lindelof space if and only if for every preclosed set $A \subseteq X$, each preopen cover $\left\{U_{\alpha}: \alpha \in \Delta\right\}$ of A contains a countable subfamily W such that $\left\{\text{preclosure }U_{\alpha}: U_{\alpha} \in W\right\}$ covers A, we study some properties of this kind of Lindelof space. We also study the relationships among Lindelof spaces, c- Lindelof spaces, strongly Lindelof spaces and strongly c- Lindelof spaces.

Remark

Every strongly Lindelof space is Lindelof space . Proof:

Let (X,τ) be a strongly Lindelof space and let $\{U_\alpha:\alpha\in\Delta\}$ be an open cover of X. Since each open set in X is a preopen set, then $\{U_\alpha:\alpha\in\Delta\}$ is a preopen cover of X which is strongly Lindelof

space. Therefore, there exists a countable number of $\left\{U_{\alpha}:\alpha\in\Delta\right\} \ni \qquad \qquad \text{the family } \left\{U_{\alpha_i}:i\in\Delta\subset N\right\} \text{covers }X \text{ . Hence every open cover of }X \text{ has a countable subcover , therefore }X \text{ is Lindelof space.}$

Remark

Every Lindelof space is c- Lindelof space . Proof:

Let (X,τ) be a Lindelof space and let $A\subseteq X$ be any closed subset of X. Let $\{U_\alpha:\alpha\in\Delta\}$ be an open cover of A. Since A is a closed subset of X, then X-A is an open subset of X, so $\{X-A\}\cup\{U_\alpha:\alpha\in\Delta\}$ is an open cover of X which is an Lindelof space. Therefore, there exists a countable number of $\{U_\alpha:\alpha\in\Delta\}$ such that $\{X-A\}\cup\{U_{\alpha_i}:i\in\Delta\subset\mathbb{N}\}$ is a countable subcover of $\{U_\alpha:\alpha\in\Delta\}$ for X. Since $A\subseteq X$ and X-A covers no part of A, then $\{U_{\alpha_i}:i\in\Delta\subset\mathbb{N}\}$ is a countable subcover of A. Put $W=\{U_{\alpha_i}:i\in\Delta\subset\mathbb{N}\}$, then it is clear that X is a countable subfamily of $\{U_\alpha:\alpha\in\Delta\}$ such that $\{C:U_{\alpha_i}:U_{\alpha_i}\in W\}$ covers A. Hence X is C-Lindelof space.

Definition [1]

A topological space X is a regular space if and only if whenever A is closed in X and $x \notin A$, then there are disjoint open sets U and V with $x \in U$ and $A \subset V$. A space X is said to be a T_3 – space if and only if it is regular and T_1 – space.

Remark

Every c- Lindelof and $\boldsymbol{T}_{\!\scriptscriptstyle 3}$ - space is Lindelof space . Proof:

Let (X,τ) be a T_3 - c- Lindelof space. Assume X is not Lindelof space, then there is an open cover $\left\{U_\alpha:\alpha\in\Delta\right\}$ for X which has no countable subcover. Since X is c- Lindelof, then there is a countable subfamily $W=\left\{U_{\alpha_i}:i\in\Delta\subset\mathbb{N}\right\}$ of $\left\{U_\alpha:\alpha\in\Delta\right\}$ such that countable subcover of X. Since $A\subseteq X$ and X-A covers no part of A, then $\left\{U_{\alpha_i}:i\in\Delta\subset\mathbb{N}\right\}$ is a

countable subcover of A. Put $W = \{U_{\alpha_i} : i \in \Delta \subset \mathbb{N} \}$, then it is clear that W is a countable subfamily of $\{U_\alpha : \alpha \in \Delta \}$ $\ni \{ \operatorname{pre-cl} U_{\alpha_i} : U_{\alpha_i} \in W \}$ covers A. Hence X is strongly c – Lindelof space.

Proposition

Every strongly c-Lindelof and T_3 - space is strongly Lindelof space .

Proof:

Let (X, τ) be a T_3 strongly c- Lindelof space. Assume X is not strongly Lindelof space, then there is a preopen cover $\{U_{\alpha} : \alpha \in \Delta\}$ for X which has no countable subcover. Since X is strongly c- Lindelof, is a countable subfamily $W = \{U_{\alpha} : i \in \Delta \subset \mathbb{N} \} \text{ of } \{U_{\alpha} : \alpha \in \Delta \} \text{ such that }$ $X = \bigcup_{i \in A \subset \mathbb{N}} \{ \text{pre - cl } U_{\alpha_i} : U_{\alpha_i} \in W \}. \text{This means ,there}$ is $x \in X$ such that $x \in \operatorname{pre} - \operatorname{cl} U_{\alpha_i}$, but $x \notin U_{\alpha_i}$ for some $i \in \Delta \subset \mathbb{N}$. Implies $x \in \text{pre}$ - derived U_{α} . Since X is a T_1 - space then $\{x\}$ is a closed subset of X and since $x \notin U_{\alpha_i}$, then $y \notin \{x\} \forall y \in U_{\alpha_i}$, $i \in \Delta \subset \mathbb{N}$. By regularity of X ,there are two open sets $V_{\scriptscriptstyle \mathrm{V}}$ and $V_{\scriptscriptstyle \mathrm{V}}^*$ $\ni y \in V_{v}$, $\{x\} \subset V_{v}^{*}$ and $V_{v} \cap V_{v}^{*} = \phi$ for $y \in U_{\alpha_i}$. Now ,put $V = \bigcup\limits_{y \in U_{\alpha_i}} V_y$,then V is an open set contains U_{α_i} . So we have V_{γ}^* is an open set containing $V \cap V_{v}^{*} = \phi$, therefore, \boldsymbol{x} such $x \notin \text{pre}$ - derived U_{α_i} which is a contradiction .Then

Note: From remark (1.1) and remark (1.4) we have every strongly Lindelof space is a c-Lindelof space.

Theorem [2]

X is strongly Lindelof.

If the set of accumulation points of the space X is finite, then X is strongly Lindelof, whenever it is Lindelof space.

Theorem

Every c-Lindelof and T_3 - space is strongly Lindelof space, whenever the set of accumulation points of X is finite. Proof:

2012,(6), (3):97-100

Let (X, τ) be a T_3 -c-Lindelof space such that the set of inverse image of any preopen set in Y is a preopen set accumulation points of X is finite. Remark (1.3) gives X is $^{\mathrm{in}}$ X. Remark [4]

Lindelof and theorem (1.5) gives X is strongly Lindelof.

Strongly C- Lindelof Spaces:

In this section, we give the definition of strongly c-and only if the inverse image of any preclosed set in Lindelof, and we also study the relationships among Lindelof Y is a preclosed set in X.

spaces, c- Lindelof spaces, strongly Lindelof spaces and Lemma [4] strongly c- Lindelof spaces.

Definition

A function $f:(X,\tau) \to (Y,\tau')$ is a preirresolute if

A function $f:(X,\tau) \to (Y,\tau')$ is a preirresolute if

A topological space (X, τ) is called strongly c-Lindelof pre $cl(f^{-1}(B)) \subseteq f^{-1}(pre\ cl(B)) \ \forall\ B \subseteq Y$. space if and only if for every preclosed set $A \subseteq X$, each Corollarypreopen cover $\{U_{\alpha} : \alpha \in \Delta\}$ of A contains a countable subfamily W such that { preclosure $U_{\alpha}: U_{\alpha} \in W$ } covers.

Every strongly c-Lindelof and T_3 - space is Lindelof space

A.

Proof:

Remark

If X is a T_3 - strongly c-Lindelof space, then by Every strongly Lindelof space is strongly c- Lindelof proposition (2.3), X is strongly Lindelof, and by space. remark (1.4), X is Lindelof.

Proof:

Proposition

Let (X, τ) be a strongly Lindelof space and If the set of accumulation points of the space X is let $A \subset X$ be any preclosed subset X. Letfinite, then X is strongly c-Lindelof space whenever it A.Thenis a Lindelof space. $\{U_{\alpha}: \alpha \in \Delta\}$ be an preopen cover of

 $\{X - A\} \cup \{U_{\alpha} : \alpha \in \Delta\}$ is a preopen cover of X which is $\{X - A\} \cup \{U_{\alpha} : \alpha \in \Delta\}$ is a preopen cover of X which is strongly Lindelof space. Therefore, there exists a countable accumulation points of X is finite, then by theorem $\{U_{\alpha}: \alpha \in \Delta\}$ such number of

 $\{X-A\} \cup \{U_{\alpha}: i \in \Delta \subset \mathbb{N}\}$ is a

which is a contradiction. Therefore X is c-Lindelof space.

Proposition

In a T_3 - space X, if the set of accumulation points of X is finite, then the concepts of c-Lindelof and strongly c- Lindelof are coincident.

Proof:

If X is strongly c- Lindelof space then by proposition (2.6) it is c-Lindelof. Conversely, if X is a T_3 - c-Lindelof space, then by remark (1.3), it is Lindelof, and since the set of accumulation points of X is finite, then by proposition (2.5) it is strongly c-Lindelof space.

Definition [4]

Let $f:(X,\tau) \to (Y,\tau')$ be any function, f is said to be a preirresolute function if and only if the

Let X be a Lindelof space such that the set of

that (1.5), X is strongly Lindelof, and by remark (2.2), it is

strongly c-Lindelof space.

Proposition

Every strongly c- Lindelof space is c- Lindelof space. Proof:

Let X be a strongly c- Lindelof space, to prove it is c-Lindelof. If not, then there is a closed set $A\subseteq X$ and an open cover $\left\{\,U_{\,\alpha}:\alpha\in\Delta\,\,\right\}$ for $\,A$, such that $A \neq \{ clU_{\alpha} : i \in \Delta \subset \mathbb{N} \}$. Since each open set is a preopen set , then $\{U_{\alpha}: \alpha \in \Delta\}$ is a preopen cover A, then there is a countable subfamily $W = \{ U_{\alpha} : i \in \Delta \subset \mathbf{N} \} \qquad \text{of} \qquad \{ U_{\alpha} : \alpha \in \Delta \}$ $\ni A = \bigcup_{i \in A \subset \mathbb{N}} \left\{ \text{pre - cl } U_{\alpha_i} : U_{\alpha_i} \in W \right\}.$ This there exists $x \in A$ such that $x \in \text{pre} - \text{cl}U_{\alpha}$ and $x \notin \operatorname{cl} U_{\alpha}$, for some $i \in \Delta \subset \mathbb{N}$.Since $x \notin \operatorname{cl} U_{\alpha}$, then $x \notin U_{\alpha}$, but $x \in \text{pre} - \text{cl}U_{\alpha}$, then $x \in \text{pre - derived } U_{\alpha}$. On the other hand ,since $x \notin \operatorname{cl} U_{\alpha_i}$, implies $x \notin U_{\alpha_i}$ and $x \notin \operatorname{derived} U_{\alpha_i}$.

Since each open set is a preopen set ,then $x \notin \text{pre}$ - derived U_{α}

Theorem [4]

Every homeomorphism function is a preirresolute function.

Theorem

A strongly c- Lindelof is a topological property. Proof:

Let (X, τ) be a strongly c- Lindelof space and let (Y, τ') be any space homeomorphic to (X, τ) , then by theorem (2.12), (Y, τ') is a preirresolute image of a strongly c- Lindelof space (X, τ) , and by theorem (2.11), (Y, τ') is strongly c- Lindelof.

Theorem

The preirresolute image of a strongly c-Lindelof space is a strongly c- Lindelof space. Proof:

Let $f:(X,\tau) \to (Y,\tau')$ be a preirresolute onto function and let X be a strongly c-Lindelof space. To prove Y is strongly c-Lindelof. Let $A \subseteq Y$ be any preclosed subset of Y, and let $\left\{U_\alpha:\alpha\in\Delta\right\}$ be a τ' - preopen cover for A. Since f is a preirresolute function, then $\left\{f^{-1}(U_\alpha):\alpha\in\Delta\right\}$ is a preopen cover of a preclosed subset $f^{-1}(A)$ of X, since X is strongly c-Lindelof space, then there is a countable

subfamily $W = \left\{ f^{-1}(U_{\alpha_i}) : i \in \Delta \subset \mathbb{N} \right\}$ of $\left\{ f^{-1}(U_{\alpha}) : \alpha \in \Delta \right\}$ such that $f^{-1}(A) = \bigcup_{i \in \Delta \subset \mathbb{N}} \left\{ \operatorname{pre-cl}\left(f^{-1}(U_{\alpha_i})\right) : f^{-1}(U_{\alpha_i}) \in W \right\}$. Then $\left\{ f \left(\operatorname{pre-cl}\left(f^{-1}(U_{\alpha_i})\right) \right) : f^{-1}(U_{\alpha_i}) \in W \right\}$ covers A. Since f is a preirresolute function, then by lemma (2.10), we have $\left\{ f(f^{-1}(\operatorname{pre-cl}(U_{\alpha_i}))) : f(f^{-1}(U_{\alpha_i})) \in f(W) \right\}$ covers A. Since f is onto, then $\left\{ \operatorname{pre-cl}(U_{\alpha_i}) : U_{\alpha_i} \in f(W) \right\}$ is a countable subfamily of $\left\{ U_{\alpha} : \alpha \in \Delta \right\}$ for A. Therefore Y is strongly c- Lindelof space.

References

- 1.S.Willard (1980).General Topology. *ADDISON WESLEY Publishing company*.Inc.United States of America.
- 2.M.Ganster (1989). A Note on Strongly Lindelof Spaces . Soochow J.Math. 15(1):99-104.
- 3.A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb (1982). On Pre-Continuous and Weak Pre-Continuous Mappings. Proc. Math. And Pnvs. Soc. Egypt 53:47-53.
- 4.E.Rana Bahjat (2004).On Semi-p-Open Sets.M.Sc.Thesis University of Baghdad, Iraq.

فضاءات فوق ليندلوف . ك

فوزي نوري نصار

الخلاصة:

في هذا البحث ، قمنا بتعريف نوع آخر من فضاءات ليندلوف أسميناه فضاء فوق ليندلوف . C ودراسة بعض خواص هذا الفضاء والعلاقة بينه وبين فضاءات ليندلوف وليندلوف - C و فوق ليندلوف .