Open Access

Further Results on Action of Finite Groups on Commutative Rings

Sind K.Ibrahim

University of Anbar -College of Science.

ARTICLE INFO

ABSTRACT

ring(field).

Received: 6 / 3 /2012 Accepted: 16 / 7 /2012 Available online: 29/8/2013 DOI: 10.37652/juaps.2012.82140

Keywords:

Action of Finite Groups, Commutative Rings.

Introduction

Let R be a commutative ring with identity 1 and let G be a finite group of automorphisms of R of order n. Let:

 $R^G = \{r \in R/g(r) = r, \text{ for all } g \in G\}$

The set R^G is a subring of R, it is called the fixed ring of G. A.G.Naoum and the author [1,2] studied the relations between R and R^G , they studied some certain ring theoretic properties of R which satisfied in R^G , for more informations see [3,4].

In this paper we study some further results of the ring R^G . We show that if I is G-invariant and |G| is invertible in R, then I is a maximal ideal in R if and only if $I \cap R^G$ is a maximal ideal in R^G , and if I is a prime ideal in R, then $I \cap R^G$ is a prime ideal in R^G .

Also, we show that if (a,b) is a projective ideal of R, then (a^n, b^n) is a projective ideal in \mathbb{R}^G , where |G| = n.

Finally, we show that if R is e-ring (field) and |G| is invertible in R, then R^G is e-ring (field).

Ideals of R and RG:

In this section we study the relation between the elements, and the ideals of R and those of R^{G} . We start with the following definition, remarks and proposition.

We recall that an ideal M of the ring R is said to be G-invariant if $g(M) \subseteq M$, for all $g \in G$,

Where $g(M) = \{g(m); m \in M\}$.

Remarks:

1- If I is an ideals of R, then $I \cap R^G$ is an ideal of R^G .

2- If an element a in R^G is invertible in R, then a is invertible in R^G .

The converse is clear [5].

Proposition:

Let G be a finite group of automorphisms of R of order n. Let $b \in R$, and let $x = \sum_{i=1}^{n} g_i(b), y = \prod_{i=1}^{n} g_i(b)$, $z = \sum_{i=1}^{n} g_i(b) g_{\delta(i)}(b)$, where δ is a 2-Cycle and $g_i \in G$. Then each of x, y and z belong to R^G , in general, $\sum_{i=1}^{n} g_i(b) g_{\delta(i)}(b) \cdots g(b) \in R^G$, where δ is an m-cycle and $l \le m \le n - 2$.

Let R be a commutative ring with identity 1 and G be a finite group of

automorphisms of R of order n,Let R^G be the fixed subring of R. In this paper we

study the relations between the ideals of R^G and R and we study R^G In case R is e-

Proof: [5].

Theorem:

Let R be a commutative ring with identity 1 and G be a finite group of automorphisms of R of order n and |G| is invertible in R, Let M be G-invariant ideal of R, then M is a maximal ideal in R if and only if $M \cap R^G$ is a maximal ideal in R^G .

Proof:

Let $a \in R^G$ and $a \notin M \cap R^G$, then $a \notin M$. But M is maximal in R, so M+Ra=R. Since $1 \in R$, then $1 \in M$ +Ra, Thus l=m+ra, where $m \in M$, $r \in R$. Thus:

$$1 = n^{-1}(\sum_{i=1}^{n} g_i(m) + a \sum_{i=1}^{n} g_i(r))$$

But M is G-invariant, implies $g_i(M) \subseteq M$, so $g_i(m) \in M$, for all $g_i \in G$ and then,

$$n^{-1} \sum_{i=1}^{n} g_i(m) \in M$$
. By Proposition (1-2) and Remark
(1-1) (2), $n^{-1} \sum_{i=1}^{n} g_i(m) \in \mathbb{R}^G$,

^{*} Corresponding author at: University of Anbar -College of Science.E-mail address:

implies $n^{-1}\sum_{i=1}^{n} g_{i}(m) \in M \cap R^{G}$, and by Proposition (1-

2),
$$\sum_{i=1}^{n} g_i(r) \in \mathbb{R}^{G}$$
, so $a \sum_{i=1}^{n} g_i(r) \in \mathbb{R}^{G}$ a.

Then $l \in (M \cap R^G) + R^G$ a. Therefore $M \cap R^G$ is a maximal ideal in R^G .

Conversely, let J be an ideal of R such that $M \subset J \subseteq R$ then,

 $M \cap R^G \subset J \cap R^G \subseteq R^G$. But $M \cap R^G$ is a maximal ideal in R^G , so $J \cap R^G = R^G$. Since $1 \in R^G$, then $1 \in J \cap R^G$ which means $1 \in J$. Hence J=R. Therefore M is a maximal ideal in R.

Theorem:

Let R be a commutative ring with identity 1 ring and G be a finite group of automorphisms of R of order n. If I is a prime ideal in R, Then $I \cap R^G$ is a prime ideal in R^G .

Proof:

Let x, $y \in \mathbb{R}^G$ such that $x.y \in I \cap \mathbb{R}^G$, then $x.y \in I$ and $x.y \in \mathbb{R}^G$. Since I is a prime ideal in R, then either $x \in I$ or $y \in I$. Hence either $x \in I \cap \mathbb{R}^G$ or $y \in I \cap \mathbb{R}^G$, then $I \cap \mathbb{R}^G$ is a prime ideal in \mathbb{R}^G .

Before we start the next result, we recall that a finitely generated ideal A which is generated by $\{a_1, a_2, ..., a_n\}$ in R is projective if and only if there exists an $n \times n$ matrix $M=(r_{ij})$ with elements in R such that:

i) UM = U, and

ii) $U^{\perp} = ann (M)$

where U= $(a_1, a_2..., a_n) \in \mathbb{R}^n$ is a vector and U^{\perp}= {X $\in \mathbb{R}^n$; UX[']=0} is the orthogonal complement of U, X' is the column vector which is the transpose of X [6]. **Theorem:**

If the ideal (a,b) is a projective in R, then (a^n,b^n) is a projective in R^G .

Proof:

Let (a,b) be an ideal in \mathbb{R}^{G} , implies that $a,b \in \mathbb{R}$ and (a,b) is a projective in \mathbb{R} ,

then there exists a matrix $\mathbf{M} = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix}$ where $\mathbf{r}_{ij} \in \mathbf{R}$, i, j

=1,2 such that:

l) (a,b) M=(a,b) and

2) ann (a,b)=ann(M), thus:

(a,b).
$$\begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix} = (a,b)$$

Hence $ar_{11}+br_{21}=a$

 $ar_{12}+br_{22}=b$. Thus: $a(1-r_{11})=br_{21}$ and $b(1-r_{22})=ar_{12}$. Therefore:

$$a^{n} \prod_{i=1}^{n} (1 - g_{i}(r_{11})) = b^{n} \prod_{i=1}^{n} g_{i}(r_{21}) , \quad \text{and}$$

$$b^{n} \prod_{i=1}^{n} (1 - g_{i}(r_{22})) = a^{n} \prod_{i=1}^{n} g_{i}(r_{12}) , g_{i} \in G$$

Put
$$\prod_{i=1}^{n} (1 - g_{i}(r_{11})) = 1 - s_{11}, \prod_{i=1}^{n} g_{i}(r_{21}) = s_{21}$$

$$\prod_{i=1}^{n} (1 - g_{i}(r_{22})) = 1 - s_{22}, \prod_{i=1}^{n} g_{i}(r_{12}) = s_{12}$$

Then $1-s_{11}$, s_{21} , $1-s_{22}$; and s_{12} are in \mathbb{R}^{G} (by Proposition 1-2).

Thus $a^n = a^n s_{11} + b^n s_{21}$ and $b^n = b^n s_{22} + a^n s_{12}$

Put M'=
$$\binom{s_{11} s_{12}}{s_{21} s_{22}}$$
.Hence (aⁿ,bⁿ)M'=(aⁿ,bⁿ).

Now to prove that $ann(a^n,b^n) = ann(M')$

Let $(x,y) \in ann(a^n,b^n)$, To prove $(x,y) \in ann(M')=\{X \in R^n; M' X'=0'\}$

i.e.
$$\mathbf{M}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}0\\0\end{pmatrix}$$
, equivalently

 $s_{11}x+s_{12}y = 0$ and $s_{21}x+s_{22}y = 0$. We use the induction on the order G: If n=1, $(x,y) \in ann(a,b)$ implies $(x,y) \in ann(M)$.So:

$$\mathbf{M}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}0\\0\end{pmatrix}. \text{Hence } \mathbf{r}_{11}\mathbf{x} + \mathbf{r}_{12}\mathbf{y} = 0 \text{ and } \mathbf{r}_{21}\mathbf{x} + \mathbf{r}_{22}\mathbf{y} = 0$$

But |G|=1, so $R=R^G$ and M=M'. Thus $(x,y) \in ann(M')$. Suppose it is true for n-1 that is $ann(a^{n-1},b^{n-1}) \subseteq ann(M')$.

Let $(x,y) \in ann(a^{n},b^{n})$, then $(xa^{n-1},yb^{n-1}) \in ann(a,b)$. So $(xa^{n-1},yb^{n-1}) \in ann(M')$.

 $\begin{array}{lll} Thus & s_{11}xa^{n\text{-}1}+s_{21}yb^{n\text{-}1}{=}0, & s_{12}xa^{n\text{-}1}+s_{22}yb^{n\text{-}1}{=}0.\\ Therefore & (s_{11}x,s_{21}y){\in}ann(a^{n\text{-}1},b^{n\text{-}1}){\subseteq}ann(M^{'}) & and\\ (s_{12}x,s_{22}y){\in}ann(a^{n\text{-}1},b^{n\text{-}1}){\subseteq}ann(M^{'}). \end{array}$

Hence:

$$s_{11}(s_{11}x) + s_{21}(s_{21}y) = 0$$

$$s_{12}(s_{12}x) + s_{22}(s_{22}y) = 0.$$

Thus,
$$s_{11} = 1 - (1 - \sum_{k=1}^{n-1} (g_1(r_{11}) \dots g_k(r_{11})))$$

$$= \sum_{k=1}^{n-1} (g_1(r_{11}) \dots g_k(r_{11}))$$

Hence

$$g(r_{11})(\sum_{k=1}^{n-1}g_1(r_{11})\dots g_k(r_{11})) = \sum_{k=1}^n g_1(r_{11})\dots g_k(r_{11}) = s_{11}$$

Similarly for $s_{12} s_{21}$ and s_{22} . Hence:

 $s_{11}x + s_{12}y=0$, and $s_{21}x + s_{22}y=0$

Thus $(x,y) \in ann(M')$ and $ann(M') \subseteq ann(a^n,b^n)$.

Therefore $ann(a^n,b^n)=ann(M)$.So (a^n,b^n) is a projective ideal in R^G .

e-ring and fields:

We start this section by the following: We recall that a ring R is said to be e-ring if for all $x \in R$, there exists $y \in R$ such that xy=x [7]. **Theorem:**

Let R be a commutative ring with identity 1 and G be a finite group of automorphisms of R of order n, and |G| is invertible in R. If R is an e-ring, then R^G is an e-ring.

Proof:

Let $x \in \mathbb{R}^{G}$, then $x \in \mathbb{R}$, but \mathbb{R} is an e-ring, then there exist $y \in \mathbb{R}$, such that xy=x, Thus $x \sum_{i=1}^{n} g_i(y) = nx$, $g_i \in \mathbb{G}$.

So $x(n^{-1}\sum_{i=1}^{n} g_i(y)) = x$. This means $n^{-1}\sum_{k=1}^{n} g_i(y) \in \mathbb{R}^G$

[by Proposition 1-2 and Remark l-l(2)]. Therefore R^G is an e-ring. Finally, we have the following result. **Theorem:**

Let R be a commutative ring with identity 1 and G be a finite group of automoiphisms of R of order n ,such that |G| is invertible in R.If R is a field, then R^G is a field.

Proof:

R is a commutative ring with l, implies that R^G is a commutative ring with l.

Let $r \in \mathbb{R}^{G}$, $r \neq 0$ then $r \in \mathbb{R}$. Hence, there exists $s \in \mathbb{R}$ such that r.s=l, then $r \sum_{k=1}^{n} g_{i}(s)=n$, Since |G| is invertible in R,then $r(n^{-1}\sum_{i=1}^{n} g_{i}(s)) = 1$.By Remark 1-1(2) and

Proposition 1-2,

$$n^{-1}\sum_{i=1}^{n} g_i(s) = r^{-1} \in \mathbb{R}^G$$
, then r has a multiplicative

inverse in R^G.Therefore R^G is a field.

References:

- [1] A.G.Naoum.(1987). The ohm type properties for finitely generated multiplication ideals. *Periodica Mathematica Hungarica* 18, 287-293.
- [2] S. Montgomery.(1980). Fixed rings of finite automorphism groups of associative rings .LNM:818,Springer – Verlag, Berlin Heidelberg New York.
- [3] F. Dums.(2011). Non- commutative invariant. Lauret Adrover Republican Argentina Press.
- [4] J. Has.(2010). The zero-divisor group under a group action in a commutative ring. J. Korean Math., Soc., 47, No. 5, pp. 1097-1106.
- [5] S. K. Ibrahim.(1996)."Action of finite groups on commutative rings". M.Sc. thesis, Univ. of Baghdad.
- [6] A.G.Naoum.(1981). On finitely generated projective ideals in commutative rings. *Periodica Mathematics Hangarica*, 12, 287-292.
- [7] R.Gilmer.(1972). Multiplicative ideal theory. M. Dekker, New York, MR55:323.

نتائج أخرى حول فعل الزمر المنتهية على الحلقات الأبدالية

سند خليل ابراهيم

الخلاصة:

لتكن R حلقة ابدالية ذات عنصر محايد 1,ولتكن G زمرة منتهية للتشاكلات المتقابلة الذاتية من R الى R ذات رتبة n.لتكن RG حلقة العناصر الصامدة في R.في هذا البحث سندرس العلاقات بين المثاليات في الحلقة RG والحلقة R ,كذلك سندرس الحلقة RG عندما تكون الحلقة R حلقة-e وايضا عندما تكون R حقل.