Document Type : Research Paper

Authors

1 Anbar Education Directorate

2 University of Anbar College of Science

3 University of Anbar, Center for Desert Studies

10.37652/juaps.2015.124509

Abstract

One hundred eighty samples were collected from (soil, insect intestine, leaves, stomach of ruminants, and sewage water) and only five isolates were selected depend on its ability to lyses cellulose and they were one from each isolation source , the selected isolates were belonged to (Staphylococcus sciuri , Streptococcus parasanguinis , Sphingomonaspaucimobilis , Rhizobium radiobacter , Escherichia coli ) with lyses zone (42,28,39,35,32 mm respectively). The PH effect change showed that best activity for cellulase enzyme was 6.627 IU/ml at PH 6 when local isolate Staph. Sciuri was used, and the enzyme activity were 5.857,5.518,5.996 IU/ml for strep. parasanguinis , Sphingo. paucimobilis , Rhizo. Radiobacter respectively at PH 7, while local isolate E. coli gave best cellulase activity at PH 6.5 reached to 4.963 IU/ml. Efficiency of five isolates were varied in their ability of cellulase activity in liquid media under different temperature, best activity of enzyme for local isolates Sphingo. Paucimobilis and Staph. Sciuri 30 C°, while best enzyme activity was recorded at 25C° for local isolates Strep. Parasanguinis and E. coli, and optimum temperature for enzyme production for Rhizo. Radiobacter was 50 C°. Also aeration and agitation effect was studied for their effect on cellulase activity, and the results showed increasing in activity of enzyme at 50 rpm in local isolates Strep. parasanguinis , Sphingo. paucimobilis , Rhizo. Radiobacter and E. coli while the best enzyme activity for Staph. Sciuri was at 100 rpm. Results also shown that the best productivity of enzyme was after two days of incubation for all isolates.

Main Subjects

  1. Teymouri, F., Alizadeh، H., Laureano – perez، L., Dale, B. E. and sticklen، M. B. 2004, Effects of ammonia fiber explosion treatment on activity of endoglucanase from Acidothermus cellulolyticus in transgenic plant. Appl. Biochem. Biotechnol. 116: 1183 – 1192.
  2. Maki, M., Leung, K.T. and Qin, W. 2009, the prospects of cellulose – producing bacteria for the bioconversion of lignocellulosic biomass. J. Biological Sciences 5(5): 500 – 516.
  3. Levy, I., Shani, Z. and Shoseyov, O. 2002, Modification of polysaccharides and plant cell wall by endo -1, 4-β-glucanase ( E Gase) and cellulose binding domains (CBD). J. Biomol. Eng. 19:17 – 30.
  4. Mohammadkazemi, F., Azin, M. and Ashori, A. 2015, Production of bacterial cellulose using different carbon sources andculture media. J. Carbo. Poly. 117. p: 518 – 523.
  5. Zou, N. and Plank, J. 2015, Intercalation of cellulase enzyme into a hydrotalcite layer structure. J. Physics and Chemistry of Solids. 76. P: 34 – 39
  6. Tonozuka, T., Yoshida, M. and Takeuchi, M. 2014, Enzymes for Cellulosic Biomass Conversion. Research Approaches to Sustainable Biomass Systems. p: 225 – 242.
  7. Nagaraju, M., Narasimha, G. and Rangaswamy, V. 2009, impact of sugar industry effluents on soil cellulose activity. J. Int. Biodeter. Biodegr. 63:1088 – 1092.
  8. Muhammad, I., Safdar, A., Quratulain, S. and Muhammad, N. 2012, Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity. Turkish Journal of Biochemistry. 37(3): 287–293.
  9. Pratima, G., Kalpana, S. and Avinash, S. 2012, Isolation of Cellulose-Degrading Bacteria and Determination of Their Cellulolytic Potential. Int. J. Microbiology. p: 1 – 5.
  10. Ardhiani, K. H., Nungki, A. P. K. and Endang, S. S. 2013, Role of Bacteria and Mold as Agent Plant Litter Composting. J. Biological and Environment Sciences : 73 – 76.
  11. Puspita, L., Eko, S., Niken, F. G. and Wiwik, R. 2012, Isolation and Characterization of Cellulase Produced by Cellulolytic Bacteria from Peat Soil of Ogan Komering Ilir, South Sumatera. Int. J. Environ. And Bioene. 3 (3) : 145 – 153.
  12. Kasing, A. and Sarawak, 1995, cellulase production. National center for Biotechnology Eduction.
  13. Saraswati, B., Ravi Kumar, M., Makesh Kumar, D. J., Balashanmugam, P., Bala Kumaran, M. D. and Kalaichelvan, P. T. 2012, cellulose production by Bacillus subtilis isolated from cow dung. Archives of Applied Science Research.  4(1): 269 – 279.
  14. Adney, B. and Baker, J. 1996, Chemical Analysis and Testing Task, Measurement of Cellulase Activities. P: 1 – 9.
  15. Murray, W. D., Sowden, L. C. and Colvin, J. R. 1984, Bacteroides cellulosolvens sp. nov. a Cellulolytic Species from Sewage Sludge. Int. J. Syst. Bacteriol. Vol. 34, no. 2, p: 185 – 187.
  16. James, B. R., Richard, E. M. and paul, J.W. 2009, Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. J. Microiological Ecol. 67: 183 – 197.
  17. Chen, H. J., Chang, H. J., Fan, C., Chen, W. H. and  Lee, M. S. 2011, Screening, isolation and characterization of cellulose biotransformation bacteria from specific soils. j.International Conference on Environment and Industrial Innovation. vol. 12، p: 216 – 220.
  18. Nakayama, M., Nakajima – kambe, T., Katayama, H., Higuchi, K., Kawasaki, Y. and Fuji, R. 2008, High catalase production by Rhizobium radiobacter strain 2 – 1. J. Bioscie. Bioengi. 106 (6) : 554 – 558.
  19. Fujimoto, N., Kosaka, T., Nakao, T. and Yamada, M. 2011, Bacillus licheniformis Bearing a High Cellulose-Degrading Activity, which was Isolated as a Heat-Resistant and Micro- Aerophilic Microorganism from Bovine Rumen. J.The Open Biotechnology. 5. P: 7 – 13.
  20. Chung-Yi, W., Yi-Ru, H., Chang-Chai, N. G., Helen, C., Hsin-Tang, L., Wen- Sheng, T. and Yuan-Tay, S. 2009, Purification and Characterization of a novel halostable cellulose from Salinivibrio sp. strain NTU-05. Enzyme and Microbial Technology-ELSEVIER, 44: 373-379.
  21. Immanuel, G., Dhanusha, R., Prema, P. and Palavesam, A. 2006, Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int. J. Env. Sci. Technol, 3, 25 – 34.
  22. Balamurugan, A., Jayanthi, R., Nepolean, P., Vidhya, P. R. and premkumar، R. 2011, Studies on cellulose degrading bacteria in tea garden soils. Afr. J. plant. Sci. 5(1): 22 – 27.
  23. Sonia, S., Aparna D., Gupta, B. L. and Saksham, G. 2013, Optimization of Cellulase Production from Bacteria Isolated from Soil. ISRN Biotechnology. P : 1 – 7.
  24. الراوی، ظافر فخری عبد القادر (2004) عزل وتشخیص البکتریا المحللة للسلیلوز ودراسة بعض الخصائص الانزیمیة، اطروحة دکتوراه، کلیة العلوم، جامعة الانبار.
  25. Vipul, V., Alpika, V. and Akhilesh, K. 2012, Isolation & production of cellulase enzyme from bacteria isolated from agricultural fields in district Hardoi, Uttar Pradesh, India. Adv. Appl. Sci. Res. 3 (1) : 171 – 174.
  26. Goyal, M. and Soni, G. 2011, Production and characterization of cellulolytic enzymes by Pleurotus florida. Mycosphere. 2 (3) : 249–254
  27. Otajevwo, F. D. and Aluyi, H. S. A. 2011, Cultural condition necessary for optimal cellulase yield by cellulolytic bacteria organisms as they relate to residual sugars released in broth medium. J. Canadian center of Science and Education، vol. 5، no. 3، p : 141 – 146.
  28. Rai, P., Tiwari, S. and Gaur, R. 2012, Optimization of Process Parameters for Cellulase Production by Novel Thermotolerant Yeast. j. BioResources.  7 (4): 5401-5414.
  29. Yin, L. J., Lin, H. H. and Xiao, Z. R. 2010, Purification and characterization of a cellulase from Bacillus subtilis YJ1. J.Marine Science and Technology, Vol. 18, No. 3, pp. 466-471.
  30. Rathnan, R. K., Gopal, S., Thomas, M. and Antony, S. 2012, Effective utilization of an aquatic weed Salvinia Molesta as a substarte for the production of Cellulase Enzyme –Eradication through utilization. Inte. J. of Enviro. Sci. Vol. 3, No.1, p: 36 – 43.
  31. Mukhtaruddin, M. T., Alam, Z. and Salleh, M. H. 2012, Characterization of Purified Cellulase from Fermentation of Sewage Sludge.Aust. J. Basic & Appl. Sci. 6 (1) : 74-78.
  32. Harshvardhan, K., Mishra, A. and Jha, B. 2013, Purification and characterization of cellulase from a marine Bacillus sp. H1666: A potential agent for single step saccharification of seaweed biomass. j. Molecular Catalysis B: Enzymatic. 93، p: 51– 56.
  33. Sadhu, S., Saha, P., Sen, S. K., Mayilraj, S. and Maiti, T. K. 2013, Production, purification and characterization of a novel thermotolerant endoglucanase (CMCase) from Bacillus strain isolated from cow dung.j. SpringerPlus. 2: 10.
  34. Lin, L., Kan, X., Yan, H. and Wang, D. 2012, Characterization of extracellular cellulose-degrading enzymes from Bacillus thuringiensis strains. Electron. J. Biotechnol. 1 – 7.
  35. الخفاجی ، زهرة محمود (2008). التقنیة الحیویة المیکروبیة ( توجهات جزئیة ) ، وزارة التعلیم العالی والبحث العلمی ، بغداد
  36. Abou-Taleb, K. A. A., Mashhoor, W. A., Nasr, S. A., Sharaf, M.S. and Abdel-Azeem, H. H. M. 2009, Nutritional and Environmental Factors Affecting Cellulase Production by Two Strains of Cellulolytic Bacilli. Aust. J. Basic & Appl. Sci., 3(3): 2429-2436.
  37. Ferreira، J. R., Davallillo, Chandler, C., Paez, G., Marmoly, Z. and Ramones, E. 2004, Microbial Protein Production from Waste of Sugar Cane Processing ( bagas septic)  Arch. Latinoam. Prod. Anim. 12 (2) : 59 – 65.
  38. Li – Liu, Zhi – Ping, W., Jie, Y., and Wei – Min, C. 2009, The Effects of different aeration Patterns on aerobic granulation.J. Environmental and Pollution. 37(1) 5 – 19.
  39. Fagade, O. E. and Bamigboye, O. O. 2012, Effect of cultural conditions on the cellulase activity of bacteria species isolated from degrading corn cob. Arch. Appl. Sci. Res. 4 (6) : 2540 – 2545.