Document Type : Research Paper

Authors

1 college education university of Al-anbar

2 College of Science, University of Baghdad

Abstract

This study was conducted to detect the ability of yeast Debryomyces hansenii DSMZ70238 to produce the killer toxin and testing the optimal conditions for production rather than studying the cytotoxicity toward the cancer cell line L20B. The optimal conditions studied for their effect on yeast growth rates and their ability to increased production of killer toxin included different concentrations of NaCl salt, glucose, different concentrations of pH as well as different temperatures. The results showed that the killer yeast had the ability to produce the killer toxin in the molecular weight of 22 KDa were detected by the using of 12% SDS Polyacryelamide Gel, The optimal conditions of the production was studied and the killing activity of this toxin was determined towards microbes used in the present study, The results showed 8% of salts, pH 4.5, Temperature 25 ͦ C and 10 % from carbon source (glucose) are the best conditions for production and the killing activity. To detect the killing activity of killer toxin toward the cancer cells, The cytotoxicity test of the killer toxin was investigated against the cell line (L20B), by using the partially purified concentrated killer toxin produced under optimal conditions, The results of this experiment showed the killer toxin has a lethal effect of cancer cells, which reached the highest percentage at 8% salts concentration and it was 47.61% and at pH 4.5 reached 23.07%, while the percentage of killing was 21.53% at 25 ͦ C and 47.30% at 10% of glucose concentration.

Keywords

Main Subjects

  1. Banjara, N.; Suhr, M.J.and Hallen-Adams, H.E. (2015). Diversity of Yeast and Molds Species from a Variety of Cheese Types. Curr Microbiol 70(6):792‒800. doi: 10.1007Ls00284-015-0790-1
  2. Breuer, U. and Harms, H. (2006). Debaryomyces hansenii-an extremophilic yeast with biotechnologil potential. Yeast. 23 (6): 415-437. Doi:10.1002LYea.1374. PMID 16652409.
  3. Prista, C.; Loureiro-Dias, M. C.; Montiel, V.; Garcia, R. and Ramos, J. (2005). Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res. 5(8): 693–701.
  4. Capece, A. and  Romano, P. (2009). “Pecorino di filiano” cheese as a selective habitat for the yeast species, Debaryomyces hansenii. Int. J. Food Microbiol. 30. and Viljoen, B.C., (2003). Yeasts as adjunct starters in matured cheddar cheese. Int.J. Food Microbiol. 86, 131–140.
  5. Ferreira, A.D., Viljoen, B.C., (2003). Yeasts as adjunct starters in matured cheddar cheese. Int.J. Food Microbiol. 86, 131–140.
  6. Hallen-Adams, H.E., Kachman, S.D., Kim, J., Legge, R.M., Martínez, I., (2015). Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecol. 15, 9–17.
  7. Desnos-Ollivier, M., Ragon, M., Robert, M., Raoux, D., Gantier, J.C.and Dromer, F. (2008). Debaryomyces hansenii (Candida famata), a rare human fungal pathogen often misidentified as Pichia guilliermondii (Candida guilliermondii). J. Clin. Microbiol. 46, 3237–3242.
  8. Roostita, R. and Fleet, G. H. (1996). The occurrence and growth of yeasts in camembert and blue-veined cheeses. Int. J. Food Microbiol. 28(3), 393-404.
  9.  Johnson, E. A., and Echavarri-Erasun, C. (2011). Yeast biotechnology. In C. P. Kurtzman, J. W. Fell and T. Boekhout (Eds.), The yeasts: A taxonomic study (Fifth ed., pp. 26). Amsterdam: Elsevier.
  10. 10.  Norkrans, B. (1969). The sodium and potassium contents of yeasts differing in halotolerance, at various NaCl concentrations in the media. Antonie Van Leeuwenhoek 35, Suppl-2.
  11. 11.  Schmitt, M. J., and Breinig, F. (2002). The viral killer system in yeast: From molecular biology to application. FEMS Microbiol. Rev. 26(3): 257–276. doi:http://dx.doi.org/10.1016/S0168-6445(02)00099-2.
  12. 12.  Bevan, E.A. and Mitchell, D.J. (1979). The killer system in yeast. In: Lemke, P.A. (Ed.), Viruses and Plasmids in Fungi. Marcel Dekker Inc., New York and Basel, pp. 161–199.
  13. 13.  Santos, A., Navascués, E., Bravo, E., Marquina, D., (2011). Ustilago maydis killer toxin as a new tool for the biocontrol of the wine spoilage yeast Brettanomyces bruxellensis. Int. J. Food Microbiol. 145, 147–154.
  14. 14.  Santos, A.;  Marquina,  D., Barroso,  J. and Peinado, J. M. (2002).  (1--›6)-Beta-D-glucan as the cell wall binding site for Debaryomyces hansenii killer toxin. Lett. Appl. Microbiol. 34, 95‒99.
  15. 15.  Marquina, D.; Barroso, J.;  Santos, A. and  Peinado, J. M. (2001). Production and characteristics of Debaryomyces hansenii killer toxin. Microbiol. Res. 156(4): 387-391. doi:10.1078/0944-5013-00117
  16. 16.  Middelbeek, E.J., Hermans, J.M.H., Stumm, C. and Muytjens, H.L. (1980). High incidence of sensitivity to yeast killer toxins among Candida and Torulopsis isolates of human origin. Antimicrob. Agents Chemother. 17, 350–354.
  17. 17.  Banjara, N.; Suhr, M. J. and Hallen-Adams H. E. (2016). A killer toxin from several food-derived Debaryomyces hansenii strains effective against pathogenic Candida yeast. Int. J. Food Microbiol. 222: 23-29.
  18. 18.  Dabrowska I. V., Tkachenko K. S., Podgorsky V. S. and Fomina M. O. (2015). Anti-Staphylococci activity of yeast isolates affected by pH of experimental medium. Factors of experimental evolution of organisms UDC, 179-182.
  19. 19.  Ghoneum, M. and Gollapudi, S. (2004). Induction of apoptosis in breast cancer cells by Saccharomyces cerevisiae, the baker’s yeast, in vitro. Anticancer Res.
  20. 20.  Schmitt, M. J. and Breinig, F. (2006). Yeast viral killer toxins: Lethality and self-protection. Nat. Rev. Microbiol. 4:212-221.
  21. 21.  Hu, R. Y., Lee, C. F., Chou, H-C. (2012). Pseudozyma spp. and Barnettozyma spp. effectively kill cancer cells in vitro. Genomic Med. Bio-markers Health Sci. 4, 61-64.
  22. 22.  Wang, X. X.; Chi, Z.; Peng, Y.; Wang, X. H.; Ru, S. G. and Chi, Z. M. (2012) Purification, characterization and gene cloning of the killer toxin produced by the marine-derived yeast Williopsis saturnus WC91-2. Microbiol. Res. 167(9):558–563. doi: 10.1016/j.micres.2011. 12.001
  23. 23.  Walker, J. M. (2002). SDS polyacrylamide gel electrophoresis of proteins. The Protein Protocols Handbook, seconded: Humana. Press. pp. 61- 67.
  24. 24.  Freshney,  R. I. ( 2010). Database of misidentified cell lines. Int. J. Cancer. 126(1): 302.
  25. 25.  Lui, G-L.; Chi, Z.; Wang, C-Y.; Zhi-peng, W.; Li, Y. and Zhen-Ming, C. (2013). Yeast Killer toxin, molecular mechanisms of their action and their application. Crit. Rev. Biotechnol. 35(2): 222–234 Doi:10.3109/07388551.2013.833582.
  26. 26.  Marquina,  D. A. ; Santos, A. and  Peinado,  J. M. (2002). Biology of killer yeasts. Int.  Microbiol.  5: 65–71.
  27. 27.  Nakase, T.; Suzuki, M.; Phaff, H.J.; Kurtzman, C.P. (1998.) Debaryomyces Lodder & Kreger-van Rij Nom. Cons. In The Yeasts — A Taxonomic Study, Kurtzman CP, Fell JW (eds). Elsevier: Amsterdam; 157–173.
  28. 28.  Kromer, G.; Galluzzi, L.; Vandenabeele, P; (2009). Classification of cell death: recommendations of the Nomenculture committee on cell death. Cell Death Differ. 16:3-11.
  29. 29.  Hu, RY.; Lee CF.; You, YC. And Chou, HC. (2013).  Analysis of cancer cell death in hepatoma cell line after the treatment of lethal culture extract from Taiwan Barnettozyma spp. Biomark. Gen. Med. 5(3):92–95.