SOME RESULTS ON P-GROUPS

YASSIN. A.W.AL-HITI
Irbid National University - Faculty of Science \& Information Technology.

ARTICLEINFO

Received: 3 / 1 /2010
Accepted: 24 / 5 /2010
Available online: 14/6/2012
DOI: 10.37652/juaps.2010.15278
Keywords:
Elementary abelian $p-$ group,
Commutator,
Center of a group.

ABSTRACT

In this paper, we define a certain subgroup ,denoted by $Z^{*}(G)$, as follows $: Z^{*}(G)=\left\{x \in Z(G): x^{p}=e\right\}$ of a finite group G, and we give some properties of $Z^{*}(G)$. Main result for $Z^{*}(G)$ is given in theorem 3.5 , which state that G is an elementary abelian p - group if and only if $G=Z^{*}(G)$.

INTRODUCTION

It is interesting to use some information on the subgroups of a finite group G to dete-rmine the structure of the group G. The con-cept of the center of a group plays an impor-
rtant role in the theory of groups especially finite p-groups .

Definition 1.1 [2]:

The center, $Z(G)$, of a group G is the subset of elements in G that commute with every element of G. In symb- ols,

$$
Z(G)=\{x \in G: x y=y x \text { for all } y \text { in } G\} .
$$

One of the first standard results, is that cent-er of a non-trivial finite p-group cannot be the trivial subgroup[1]. This forms the basis for many inductive methods in p-groups.
It is well known that a group G is abelian if and only if G is identical with its center[3].

Definition 1.2 [4]:

Let G be a group and let $a, b \in G$.Then $a b a^{-1} b^{-1}$ is called a com- mutator of a and b. Let S denote the set of all commutators of G and let G^{\prime} denote the subgroup of G generated by S then G^{\prime} is called commutator subgroup of G.
The commutator subgroup G^{\prime} is the smallest normal subgroup of G such that $\quad G / G^{\prime}$, is abelian

[^0]$O(G)$ means order of G is defined to be the number of its elements [2].

2. BASIC DEFINITIONS

Definition 2.1. Let G be a group, then a subgroup H of G is said to be a characte-
ristic subgroup [4] of G if $\alpha(H) \subseteq H$ for all automorphism α of G.
Definition 2.2. Let G be a finite p-group. Define $Z^{*}(G)=\left\{x \in Z(G): x^{p}=e\right\}$, where e is the identity of G.
Remark. The subgroup $Z^{*}(G)$ of a p-group G may or may not be identical with $Z(G)$ as the following two examples show that .
Examples 2.3. (1) A p-group G such that $Z^{*}(G) \neq Z(G)$.
Let $G=\langle x\rangle$ with $O(G)=8$. Since G is cyclic group , then $G=Z(G)$. Also $x^{4} \in Z(G)$ and $\left(x^{4}\right)^{2}=e . \quad$ We have $\quad x^{i} \in Z(G) \quad$ for $i=1,2,3,4,5,6,7$.
But $\quad\left(x^{i}\right)^{2} \neq e$, for $i=1,2,3,5,6,7$. Hence $x^{i} \notin Z^{*}(G) \quad$ for $\quad i=1,2,3,5,6,7$. Therefore $Z^{*}(G)=\left\{e, x^{4}\right\} \neq Z(G)$.
(2) A p - group G such that $Z^{*}(G)=Z(G)$. Let $G=\left\{\langle x, y\rangle: x^{4}=e, y^{2}=e,(x y)^{2}=e\right\} \quad$ Then $Z(G)=\left\{e, x^{2}\right\} \quad, \quad$ and $\quad\left(x^{2}\right)^{2}=e$. Hence $x^{2} \in Z^{*}(G)$. Therefore $Z^{*}(G)=Z(G)$.

3. THEORMS

Theorem 3.1. Let G be a finite p-group, then $Z^{*}(G) \neq\{e\}$.
Proof . It is obvious that $o(G)=p^{n}, n \geq 1$. We know
that
[5],
$o(Z(G))=p^{r}, 1 \leq r \leq n$. So $p \mid o(Z(G))$, and by Cauchy theorem[6], it fallows that $Z(G)$ contains an element $\quad x \neq e$ of order p, i.e. $x^{p}=e$.Thus $e \neq x \in Z^{*}(G)$, which means that $Z^{*}(G) \neq\{e\}$.
Remark. Finiteness of G in the above theorem is necessary because there are
infinite p-groups G with $Z^{*}(G)=\{e\}$.
Lemma . Let G be a finite group and let $\alpha \in$ $\operatorname{Aut}(G)$, then

$$
O(x)=O(\alpha(x)), \forall x \in G
$$

Proof. Since G is finite, then $\forall x \in G$, there is an integer n (depend on x) such that $x^{n}=e$.
But $\quad(\alpha(x))^{n}=\alpha\left(x^{n}\right)$

$$
\begin{aligned}
& =\alpha(e) \\
& =e
\end{aligned}
$$

Now, suppose that there is an integer $m<n$ such that
$(\alpha(x))^{m}=\alpha\left(x^{m}\right)=e$.
Then $\alpha\left(x^{m}\right)=\alpha\left(x^{n}\right)$. Since α is one-to-one, then $x^{m}=x^{n}=e, \quad$ so $\quad o(x)=m$, which is a contradiction. Hence $O(\alpha(x))=n$.
Theorem 3.2. Let G be a finite p-group. Then $Z^{*}(G)$ is a characteristic subgroup[4],

$$
\text { of } \mathrm{G}^{\text {Then }}
$$

Proof. It is easy to show that $Z^{*}(G)$ is a normal subgroup of G.. Now let $\alpha \in \operatorname{Aut}(G)$, then for every $z \in Z^{*}(G)$ we have

$$
z x=x z, \forall x \in G
$$

So that ,
$\alpha(z) \alpha(x)=\alpha(x) \alpha(z), \forall \alpha \in \operatorname{Aut}(G)$.
Since $z^{p}=e$, then (by lemma) we have $(\alpha(z))^{p}=e$.

Thus $\alpha(z) \in Z^{*}(G)$ which means that $Z^{*}(G)$ is a characteristic subgroup of G.
Corollary. For every finite p-group G, there is a natural homomorphism from

$$
\operatorname{Aut}(G) \text { into } \operatorname{Aut}\left(G / Z^{*}(G)\right) .
$$

Proof. Since $Z^{*}(G)$ is a characteristic subgroup of G, we can define
$\Theta:$ Aut $(G) \rightarrow \operatorname{Aut}\left(G / Z^{*}(G) \quad\right.$ by
$\Theta\left(\alpha\left(x Z^{*}(G)\right)\right)=(\alpha(x)) Z^{*}(G)$
It is easy to show that Θ is a homomor- rphism.
Remark. $\quad Z^{*}(G)$ is not necessarily fully invariant [5] as shown in the following example. Let $G=\left\langle x, y, z, z^{4}=y^{2}=x^{2}, y x=x^{-1} y\right.$, $x z=z x, z y=y z\rangle$
It is clearly that $o(G)=16, o\left(Z^{*}(G)\right)=4$, by the fundamental theorem of finite abelian group [5], it follows that

$$
Z^{*}(G) \square \times \square
$$

Define $\alpha: G \rightarrow G$ by
$\alpha(x)=\alpha(y)=\alpha\left(x^{3}\right)=\alpha(x y z)=\alpha(y x z)=y$ and $\alpha\left(x^{2}\right)=\alpha(x y)=\alpha(x z)=\alpha(y x)=\alpha(z)=e$.
Then α is an endomorphism of G mapping $Z^{*}(G)$ into y which is not in $Z^{*}(G)$.
Theorem 3.3. Let $G_{1}, G_{2}, \ldots, G_{n}$ be finite p-groups. Then

$$
Z^{*}\left(G_{1} \times G_{2} \times \ldots \times G_{n}\right)=
$$

$$
Z^{*}\left(G_{1}\right) \times Z^{*}\left(G_{2}\right) \times \ldots \times Z^{*}\left(G_{n}\right)
$$

$$
\begin{aligned}
& G=G_{1} \times G_{2} \times \ldots \times G_{n} \text { Proof } . \text { Consider } \\
& Z(G)=Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \ldots \times Z\left(G_{n}\right)
\end{aligned}
$$

(see[3, chapter 5, proposition 2])
Let $z \in Z^{*}(G)$, so $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$, where $z_{i} \in G_{i} \forall i, 1 \leq i \leq n$.
Therefore $\quad z \in Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \ldots \times Z\left(G_{n}\right)$. By definition of $Z^{*}(G)$, we have $z^{p}=e$, consequently $\quad z^{p}=\left(z_{1}^{p}, z_{2}^{p}, \ldots, z_{n}^{p}\right)=e$, which means that

$$
z_{i}^{p}=e, \forall i 1 \leq i \leq n
$$

Therefore $z_{i} \in Z^{*}\left(G_{i}\right), \forall i 1 \leq i \leq n$. Thus $Z^{*}(G) \subseteq Z^{*}\left(G_{1}\right) \times Z^{*}\left(G_{2}\right) \times \ldots \times Z^{*}\left(G_{n}\right) \ldots \ldots(1)$
Conversely suppose that $z_{i} \in Z^{*}\left(G_{i}\right), \forall i \quad 1 \leq i \leq n$, then $\quad z_{i} \in Z\left(G_{i}\right)$, and $\quad z_{i}^{p}=e, \forall i 1 \leq i \leq n$.
Let $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in Z^{*}\left(G_{1}\right) \times Z^{*}\left(G_{2}\right) \times \ldots \times Z^{\prime \prime}\left(G_{n}\right)$. Then $z \in Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \ldots \times Z\left(G_{n}\right)$, which means that $z \in Z(G)$.So
$z^{p}=\left(z_{1}, z_{2}, \ldots, z_{n}\right)^{p}=\left(z_{1}^{p}, z_{2}^{p}, \ldots, z_{n}^{p}\right)=e$. Thus $z \in Z^{*}(G)$ and

$$
\begin{equation*}
Z^{*}\left(G_{1}\right) \times Z^{*}\left(G_{2}\right) \times \ldots \times Z^{*}\left(G_{n}\right) \subseteq Z^{*}(G) . . \tag{2}
\end{equation*}
$$

From (1) and (2) we conclude

$$
\begin{aligned}
& Z^{*}\left(G_{1} \times G_{2} \times \ldots \times G_{n}\right)= \\
& \quad Z^{*}\left(G_{1}\right) \times Z^{*}\left(G_{2}\right) \times \ldots Z^{*}\left(G_{n}\right), \text { and this }
\end{aligned}
$$

completes the proof.
It is clear that the commutator subgroup $\left(Z^{*}(G)\right)^{\prime}$ of $Z^{*}(G)$ is $\{e\}$ for every
finite p - group.
Now we get the following theorem as criteria for G to be abelian.
Theorem 3.4: Let G be a finite p-group, then G is abelian p-group if and only if $Z^{*}\left(G^{\prime}\right)=\{e\}$, where G^{\prime} is the commutator subgroup of G.
Proof. The only if part is obvious. To prove the if part, suppose that $Z^{*}\left(G^{\prime}\right)=\{e\}$
and G is non abelian, then $G^{\prime} \neq\{e\}$. But G is a finite p-group, so by theorem 3.1. it follows that $Z^{*}(G) \neq\{e\}$, which is contradiction. Then G is abelian. $Z^{*}(G)$ gives an indication about G to be an elementary abelian p-group.
Theorem 3.5. Let G be a finite p-group. Then $G=Z^{*}(G)$ if and only if G is an
elementary abelian p-group.
Proof. If $G=Z^{*}(G)$, then $G=Z(G)$ which means that G is abelian. Also for each $x \in G$, we have $x \in Z^{*}(G)$ and so $x^{p}=e$. Thus G is abelian p-group.

Then $G=Z(G)$. Moreover, for each $x \in G$, we have $x \in Z(G)$ and so $x^{p}=e$. Thus $x \in Z^{*}(G)$. Hence $G \subseteq Z^{*}(G)$. Therefore $G=Z^{*}(G)$. This completes the proof.
Theorem 3.6: Let G be a finite p-group and $Z(G)$ is cyclic . Then $o\left(Z^{*}(G)\right)=p$.
Proof. Since G is a finite p-group, then $o(G)=p^{n}(n>1)$ and $o(Z(G))=p^{r}$,
where $1 \leq r \leq n$. Then there are two cases :

Case(i) : $r=1$, in this case $o(Z(G))=p$, so $o\left(Z^{*}(G)\right)=p$.
Case (ii) : $r>1$, since $Z(G)$ is cyclic, then $Z^{*}(G)$
 $o\left(Z^{*}(G)\right)=p^{i}, \quad 1<i \leq r$, then there is $a \in Z^{*}(G)$ such that $a^{p}=e$ and $a^{p^{i}}=e$, where $p^{i}>p$, which is contradiction.
Therefore $i=1$, and $o\left(Z^{*}(G)\right)=p$. This
Completes the proof.
Corollary : Let G be a finite p-group, then $o\left(Z^{*}(G)\right)=p$.
Theorem 3.7 : Let $G=\langle a\rangle$ be a finite cyclic group of order p^{n}. Then
$Z^{*}(G)=\left\{e, a^{p^{n-1}}, a^{p^{n-1}}, \ldots, a^{(p-1) p^{n-1}}\right\}$
Proof: We have $G=Z(G)$ and $a^{p^{n-1}} \in Z(G)$. Then $\left(a^{p^{n-1}}\right)^{p}=a^{p^{n}}=e$ which means that $a^{p^{n-1}} \in Z^{*}(G)$.
Similarly $a^{i p^{n-1}} \in Z^{*}(G), i=0,1, \ldots, p-1$. Now suppose that

$$
a^{p^{n-r}} \in Z^{*}(G), 2<r<n .
$$

$Z^{*}(G)=\left\{e, a^{p^{n-1}}, a^{2 p^{n-1}}, \ldots, a^{(p-1) p^{n-1}}\right\}$
Then $\left(a^{p^{n-r}}\right)^{p}=e$. i.e. $\left(a^{p^{n-r+1}}\right)=e$, which is a contradiction. Therefore and this completes the proof.

REFERENCES

[1] Boen , J.R ,(1994), On p-Groups of class Three Generated by Three Elements Proceeding of the American Mathematical Society, Vol.12, No.6, : pp: 978-981.
[2] Burton, D.M.,(1967), Introduction to Modern Abstract Algebra, Addision- Wesley, London.
[3] Dummit, D.S. and Foot, R.,(1999) , Abstract Algebra, Second Edition, john Wiley and Sons, Inc., New York.
[4] Gallian, J.A., (1995),Contemporary Abstract Algebra, Third Edition, D.C. Heath and Company .
[5] Hall , M. and Senior , J. K. , (1964), The Group of order 2^{n}, MacMillan and company .
[6] Herstein , I. N. (1990) , Topiocs in Abstract Algebra, Second edition , Macmillan Publishing Company.
[7] Khanna ,V.K., and Bhambri, S.K. (1996) , A Course in Abstract Algebra, Vikas Publishing House Pvt Ltd, Delhi.
[8] Leedham-Green, C.R. ,(1994), The structure of finite $\quad p$-groups , Journal of the London Mathematical Society .(2), 50(1), pp : 49-67.
[9] Mall , M., (1973), The Theory of Groups, Macmillan, New york.
بعض النتائج في الزمر - بع
ياسين عب الواحد الهيّي

$$
\text { اذا كان G=Z } G \text { (G). }
$$

[^0]: __ * Corresponding author at: Irbid National University - Faculty of Science \& Information Technology, Iraq.E-mail address:

