Open Access

SOME RESULTS ON P-GROUPS

YASSIN. A.W.AL-HITI

Irbid National University - Faculty of Science & Information Technology.

ABSTRACT

ARTICLE INFO

Received: 3 / 1 /2010Accepted: 24 / 5 /2010Available online: 14/6/2012DOI: 10.37652/juaps.2010.15278Keywords: Elementary abelian p - group,

In this paper, we define a certain subgroup ,denoted by $Z^*(G)$, as follows $Z^*(G) = \{x \in Z(G): x^p = e\}$ of a finite group G, and we give some properties of $Z^*(G)$. Main result for $Z^*(G)$ is given in theorem 3.5, which state that G is an elementary abelian p^- group if and only if $G = Z^*(G)$.

INTRODUCTION

Commutator.

Center of a group.

It is interesting to use some information on the subgroups of a finite group G to dete-rmine the structure of the group G. The con-cept of the center of a group plays an impor-

rtant role in the theory of groups especially finite p - groups.

Definition 1.1 [2] :

The center, Z(G), of a group G is the subset of elements in G that commute with every element of G. In symb- ols,

 $Z(G) = \{x \in G : xy = yx \text{ for all } y \text{ in } G \}.$

One of the first standard results, is that cent-er of a non-trivial finite p-group cannot be the trivial subgroup[1]. This forms the basis for many inductive methods in p-groups.

It is well known that a group G is abelian if and only if G is identical with its center[3].

Definition 1.2 [4] :

Let *G* be a group and let $a, b \in G$. Then $aba^{-1}b^{-1}$ is called a commutator of *a* and *b*. Let *S* denote the set of all commutators of *G* and let *G'* denote the subgroup of *G* generated by *S* then *G'* is called commutator subgroup of *G*.

The commutator subgroup G' is the smallest normal subgroup of G such that $G'_{G'}$ is abelian

O(G) means order of G is defined to be the number of its elements [2].

2. BASIC DEFINITIONS

Definition 2.1. Let G be a group, then a subgroup H of G is said to be a characte-

ristic subgroup [4] of G if $\alpha(H) \subseteq H$ for all automorphism α of G.

Definition 2.2. Let G be a finite p – group. Define

 $Z^*(G) = \{x \in Z(G) : x^p = e\}$, where *e* is the identity of *G*.

Remark. The subgroup $Z^*(G)$ of a p-group G may or may not be identical with Z(G) as the following two examples show that .

Examples 2.3. (1) A p-group G such that $Z^*(G) \neq Z(G)$.

Let $G = \langle x \rangle$ with O(G) = 8. Since G is cyclic group, then G = Z(G). Also $x^4 \in Z(G)$ and $(x^4)^2 = e$. We have $x^i \in Z(G)$ for i = 1, 2, 3, 4, 5, 6, 7.

But $(x^{i})^{2} \neq e$, for i = 1, 2, 3, 5, 6, 7. Hence $x^{i} \notin Z^{*}(G)$ for i = 1, 2, 3, 5, 6, 7. Therefore $Z^{*}(G) = \{e, x^{4}\} \neq Z(G)$.

(2) A p-group G such that $Z^*(G) = Z(G)$. Let $G = \{\langle x, y \rangle : x^4 = e, y^2 = e, (xy)^2 = e\}$ Then $Z(G) = \{e, x^2\}$, and $(x^2)^2 = e$. Hence $x^2 \in Z^*(G)$. Therefore $Z^*(G) = Z(G)$. 3. THEORMS

^{*} Corresponding author at: Irbid National University - Faculty of Science & Information Technology, Iraq.E-mail address:

Theorem 3.1. Let G be a finite p - group, then $Z^*(G) \neq \{e\}.$

Proof. It is obvious that $o(G) = p^n, n \ge 1$. We know that [5], $o(Z(G)) = p^r, 1 \le r \le n$. So $p \mid o(Z(G))$, and by Cauchy theorem [6], it fallows that Z(G) contains an element $x \neq e$ of order p, i.e. $x^p = e$. Thus $e \neq x \in Z^*(G)$, which means that $Z^*(G) \neq \{e\}$.

Remark. Finiteness of G in the above theorem is necessary because there are

infinite p – groups G with $Z^*(G) = \{e\}$.

Lemma. Let G be a finite group and let $\alpha \in$ Aut(G), then

$$O(x) = O(\alpha(x)), \forall x \in G$$

Proof. Since G is finite, then $\forall x \in G$, there is an integer *n* (depend on x) such that $x^n = e$.

But
$$(\alpha(x))^n = \alpha(x^n)$$

= $\alpha(e)$
= e

Now, suppose that there is an integer m < n such that

 $(\alpha(x))^m = \alpha(x^m) = e$.

Then $\alpha(x^m) = \alpha(x^n)$. Since α is one-to-one, then $x^m = x^n = e$, so O(x) = m, which is a contradiction. Hence $O(\alpha(x)) = n$.

Theorem 3.2. Let G be a finite p - group. Then $Z^{*}(G)$ is a characteristic subgroup[4],

Proof. It is easy to show that $Z^*(G)$ is a normal subgroup of G.. Now let $\alpha \in Aut(G)$, then for every $z \in Z^*(G)$ we have

$$zx = xz, \forall x \in G.$$

So that

So that ,

$$\alpha(z) \alpha(x) = \alpha(x) \alpha(z), \forall \alpha \in Aut(G).$$

Since $z^{p} = e$, then (by lemma) we have $(\alpha(z))^p = e$.

Thus $\alpha(z) \in Z^*(G)$ which means that $Z^*(G)$ is a characteristic subgroup of G.

Corollary. For every finite p - group G, there is a natural homomorphism from

Aut(G) into Aut(
$$\overset{G}{/}_{Z^*(G)}$$
).

Proof. Since $Z^*(G)$ is a characteristic subgroup of G, we can define

$$\Theta: Aut(G) \to Aut(\overset{G}{Z^{*}(G)})$$
 by

 $\Theta(\alpha(x Z^*(G))) = (\alpha(x))Z^*(G)$

It is easy to show that Θ is a homomor-rphism.

Remark. $Z^*(G)$ is not necessarily fully invariant [5] as shown in the following example. Let $G = \langle x, y, z, z^{4} = y^{2} = x^{2}, yx = x^{-1}y,$ xz = zx, zy = yz

It is clearly that o(G) = 16, $o(Z^*(G)) = 4$, by the fundamental theorem of finite abelian group [5], it follows that

$$Z^*(G) \square \square \times \square$$

Define $\alpha: G \to G$ by $\alpha(x) = \alpha(y) = \alpha(x^3) = \alpha(xyz) = \alpha(yxz) = y$ and $\alpha(x^2) = \alpha(xy) = \alpha(xz) = \alpha(yx) = \alpha(z) = e.$

Then α is an endomorphism of G mapping $Z^*(G)$ into y which is not in $Z^*(G)$.

Let G_1, G_2, \dots, G_n be finite Theorem 3.3. p-groups . Then

$$Z^*(G_1 \times G_2 \times \dots \times G_n) =$$

 $Z^*(G_1) \times Z^*(G_2) \times ... \times Z^*(G_n)$

$$G = G_1 \times G_2 \times ... \times G_n \operatorname{Proof} . \operatorname{Consider}$$
$$Z(G) = Z(G_1) \times Z(G_2) \times ... \times Z(G_n)$$
$$(\operatorname{see}[3, \operatorname{chapter} 5, \operatorname{proposition} 2])$$

Let $z \in Z^*(G)$, so $z = (z_1, z_2, ..., z_n)$, where $z_i \in G_i \quad \forall i, 1 \le i \le n.$

Therefore $z \in Z(G_1) \times Z(G_2) \times ... \times Z(G_n)$. By definition of $Z^*(G)$, we have $z^p == e$, consequently $z^p = (z_1^p, z_2^p, ..., z_n^p) = e$, which means that

$$z_i^p = e, \forall i \ 1 \le i \le n.$$

Therefore $z_i \in Z^*(G_i)$, $\forall i \ 1 \le i \le n$. Thus $Z^*(G) \subseteq Z^*(G_1) \times Z^*(G_2) \times ... \times Z^*(G_n) \dots \dots (1)$ Conversely suppose that $z_i \in Z^*(G_i)$, $\forall i \ 1 \le i \le n$, then $z_i \in Z(G_i)$, and $z_i^p = e, \forall i \ 1 \le i \le n$. Let $z = (z_1, z_2, \dots, z_n) \in Z^*(G_1) \times Z^*(G_2) \times \dots \times Z^*(G_n)$. Then $z \in Z(G_1) \times Z(G_2) \times \dots \times Z(G_n)$, which means that $z \in Z(G)$.So $z^p = (z_1, z_2, \dots, z_n)^p = (z_1^p, z_2^p, \dots, z_n^p) = e$. Thus $z \in Z^*(G)$ and

$$Z^*(G_1) \times Z^*(G_2) \times ... \times Z^*(G_n) \subseteq Z^*(G)...(2)$$

From (1) and (2) we conclude

 $Z^*(G_1 \times G_2 \times \dots \times G_n) =$

 $Z^{*}(G_{1}) \times Z^{*}(G_{2}) \times ... Z^{*}(G_{n})$, and this

completes the proof.

It is clear that the commutator subgroup $(Z^*(G))'$ of

 $Z^*(G)$ is $\{e\}$ for every

finite p – group.

Now we get the following theorem as criteria for G to be abelian.

Theorem 3.4 : Let G be a finite p - group, then G is abelian p - group if and only if $Z^*(G') = \{e\}$, where G' is the commutator subgroup of G.

Proof. The only if part is obvious . To prove the if part, suppose that $Z^*(G') = \{e\}$

and G is non abelian, then $G' \neq \{e\}$. But G is a finite p-group, so by theorem 3.1. it follows that $Z^*(G) \neq \{e\}$, which is contradiction. Then G is abelian. $Z^*(G)$ gives an indication about G to be an elementary abelian p-group.

Theorem 3.5. Let G be a finite p-group. Then $G = Z^*(G)$ if and only if G is an elementary abelian p-group.

Proof. If $G = Z^*(G)$, then G = Z(G) which means that G is abelian. Also for each $x \in G$, we have $x \in Z^*(G)$ and so $x^p = e$. Thus G is abelian p-group.

Then G = Z(G). Moreover, for each $x \in G$, we have $x \in Z(G)$ and so $x^p = e$. Thus $x \in Z^*(G)$. Hence $G \subseteq Z^*(G)$. Therefore $G = Z^*(G)$. This completes the proof. **Theorem 3.6:** Let *G* be a finite p – group and Z(G)is cyclic. Then $o(Z^*(G)) = p$. *Proof*. Since *G* is a finite p – group, then $o(G) = p^n (n > 1)$ and $o(Z(G)) = p^r$, where $1 \le r \le n$. Then there are two cases :

Case(i) : r = 1, in this case o(Z(G)) = p, so $o(Z^*(G)) = p$.

Case (ii) : r > 1, since Z(G) is cyclic, then $Z^*(G)$ is $Z_{y}^*(G) \\ \times Z_{e}^*(G) \\ \times$

Corollary : Let G be a finite p - group, then $o(Z^*(G)) = p$.

Theorem 3.7 : Let $G = \langle a \rangle$ be a finite cyclic group of order p^n . Then

$$Z^{*}(G) = \{e, a^{p^{n-1}}, a^{2p^{n-1}}, \dots, a^{(p-1)p^{n-1}}\}$$

Proof: We have $G = Z(G)$ and $a^{p^{n-1}} \in Z(G)$.
Then $(a^{p^{n-1}})^{p} = a^{p^{n}} = e$ which means that

$$a^{p^{n-1}} \in Z^*(G).$$

Similarly $a^{i p^{n-1}} \in Z^*(G), i = 0, 1, ..., p-1$. Now suppose that

$$a^{p^{n-r}} \in Z^*(G), \ 2 < r < n.$$

$$Z^*(G) = \{e, a^{p^{n-1}}, a^{2p^{n-1}}, \dots, a^{(p-1)p^{n-1}}\}$$
Then $(a^{p^{n-r}})^p = e$. i.e. $(a^{p^{n-r+1}}) = e$, which is a contradiction. Therefore and this completes the proof.

P- ISSN 1991-8941 E-ISSN 2706-6703 2010,(4), (2):74-77

REFERENCES

- Boen , J.R ,(1994), On p Groups of class
 Three Generated by Three Elements
 Proceeding of the American Mathematical
 Society , Vol.12 , No.6, : pp: 978-981.
- [2] Burton, D.M.,(1967), **Introduction to Modern** Abstract Algebra, Addision- Wesley, London.
- [3] Dummit, D.S. and Foot, R.,(1999), Abstract Algebra, Second Edition, john Wiley and Sons, Inc., New York.
- [4] Gallian, J.A., (1995), Contemporary Abstract Algebra, Third Edition, D.C. Heath and Company.
- [5] Hall , M. and Senior , J. K. , (1964), The Group of order 2^n , MacMillan and company .

- [6] Herstein , I. N. (1990) , Topiocs in Abstract Algebra, Second edition , Macmillan Publishing Company.
- [7] Khanna ,V.K., and Bhambri, S.K. (1996) , A
 Course in Abstract Algebra , Vikas Publishing House Pvt Ltd, Delhi.
- [8] Leedham-Green, C.R. ,(1994), The structure of finite p⁻ groups , Journal of the London Mathematical Society .(2), 50(1), pp : 49-67.
- [9] Mall , M., (1973), The Theory of Groups, Macmillan, New york.

بعض النتائج في الزمر - P

ياسين عبد الواحد الهيتي

الخلاصة

في بحثنا هذا تناولنا دراسة الزمر من نمط (P-group) المنتهية . حيث عرفنا زمرة جزئية جديدة للزمرة G ، رمزنا لها بالرمز $Z^*(G)$ ، و أعطينا عددا من المبرهنات ألتي تحدد بعض خواص $Z^*(G)$. أهم ألنتائج هي (المبرهنة 3.6) حيث أثبتنا أن الزمرة G تكون ابيلية أوليا اذا و فقط اذا كان $G = Z^*(G)$.