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 Aim this article to provide an accessible introduction to the notion of 

topological entropy and (for context) its measure theoretic analogue, and then to 

present some work applying related ideas to the structure of iterated preimages for a 

continuous (in general non-invertible) map of a compact metric space to itself. These 

ideas will be illustrated by tow classes of examples, form circle maps and symbolic 

dynamics. My focus is on motivating and explaining definitions. Most results are 

stated with at most a sketch of the proof. The informed reader will recognize imagery 

from Bowen’s exposition of topological entropy which I have freely adopted for 

motivation.  
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Measure-theoretic entropy  

How mach can we learn from observations using an 

instrument with finite resolution? 

A simple model of a single observation on a "state 

space" X is a finite partition P={A1,A2,…,AN} of X 

into atoms, grouping the point (states) in X according 

to the reading they induce on our instrument. A 

measure µ on X with total measure µ(X) =1 defines 

the probability of reading as : 

Pi= µ(Ai), i=1,2,…,N 

The entropy of the partition as the following 

H(P) = -


N

i

piPi
0

log   

Measures the a priori uncertainty about the outcome of 

an observation or conversely the information we 

obtain from performing the observation. The extreme 

values entropy among partition with a fixed number N 

of atoms are H(P) =0, when the outcome is completely 

determined (some Pi = 1, all others = 0), and H(P) = 

log N, when all outcomes are equally likely (Pi = N

1

 , 

i = 1,2,…,N ). 

 
* Corresponding author at: Education College / Anbar 

University, Iraq.E-mail address:  

 

To model a sequence of observations at different 

times, we imaging a dynamical system generated by 

the ( µ-measurable) map f: X→X , so the state initially 

at x  X evolves , after κ time intervals, to the state 

located at fκ (x), where  

 fκ =f,f,…f {k time} 

An 0bservation made after κ time intervals is modeled 

by the partition f-κ[P] = {f-κ[A1] ,…, f-κ[AN]} ,where 

the κth iterated preimage of AX is 

 f-κ[A1] ={xX / fκ(x) A } .  

Assuming that µ is an f-invariant measure (µ(f-1[A1] 

= µ (A)), the outcomes of observation made at 

different times are identically distributed. The joint 

distribution of n successive observations performed 

one time apart is modeled by the mutual refinement: 

Pn = P  f-1 [P]  …f(n-1) [P]  

Whose typical atom, Ai0 ∩ f-1[Ai1] … f-(n-1)[Ain-1], 

consists of the points with a given itinerary of length n 

with respect to P(i.e, fj(x)   Aij, j = 0,..,n-1). The 

asymptotic average information per observation for 

sequence of successive observations 

H(f,P) = 
)(

1
lim n
n

PH
n  
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Is the entropy of , f relative to P. 

For example , suppose f:X→X is the restriction to the 

unit circle S1 = { x C ∕ │ x│=1} of x→ x2. If we 

parameterize s1 by θ   R using exp(θ)=e2πiθ S1 , 

our map corresponds to θ→2θ (mod Z), the angle-

doubling map. ( Lebesgue) arc length measure is 

invariant under this map, and if P is a partition into 

tow semicircles say A1 = {0 ≤ θ ≤ 2

1

 } ,A2= { 2

1

 ≤ θ 

≤ 1 }, then Pn is a partition into 2n intervals of equal 

arc length. Thus H(Pn) = n log2, so 

 H(f,P) = log2 . 

Note that case the observations at different time are 

(probabilistically) independent knowing the itinerary 

of length dose not help us predict the next position of a 

random point . 

An equivalent model of this situation comes from 

expressing the angle in binary notation : 

.....1,0},1,0{,
20

1







ix
x

i

i
i

i
 

Which is ambiguous only on the Lebesgue-null set of 

dyadic rational values for θ. Up to this ambiguity, we 

have a bijection with the set {0,1}N of sequences 

x=x0,x1,… in {0,1}. For any finite sequence ω=ω0, 

…,ωn-1 {0,1}n, the cylinder set 

 C(ω)={x{0,1}N ∕ xi=ωi for i=0,1,…,n-1} 

Of sequences which begin with ω corresponds to an 

are in S1 of length 2-n, and we can define a measure µ 

on {0,1}N via 

 µ(C(ω))=2-n for all ω of length n, 

which is equivalent to arclength measure on S1. The 

angle-doubling corresponds to the shift map on 

sequences 

 s(x0x1x2…) = x1x2… 

More generally, if  is a finite set ("alphabet") and we 

assign a"weigh" P(a) ≥ 0 to each "letter" a  so that 

1)( 
a

aP

, then the formula 

 µ(C( ω0…ωn-1))=P(ω0)P(ω1)…P(ωn-1) 

defines a probability measure on the space of 

sequences 

 N ={x=x0x1…| xi  , i=0,1,…} 

And the natural shift map on N with this measure is 

called a Bernoulli Shift. 

The partition P = {C(a)| a} has entropy 

 




a

aPaPPH )(log)()(

 

The refinement Pn consists of all cylinder sets C(ω) as 

ω ranges "words" ω=ω0…ωn-1 N of length | ω| = 

n, and straightforward calculation shows that 

successive observation are independent with 

 H(Pn) = nH(P), H(s,P) = H(P).  

 The quantity H(f,P) depends on our observational 

device. We obtain a device-independent measurement 

of the predictability of the measure theoretic model  

f:(X µ) →(X µ) by maximizing over all finite 

partitions this is the entropy of f with respect to µ; 

 hµ(f) = sup{H(f,P) | P a finite measurable partition of 

X }. 

It can be shown that the partition P of S1 into 

semicircles maximizes H(f,P) for the angle-doubling 

map so hµ(f) =log2 in this case. For the general 

Bernoyll shift (determined by the weights P(a), a ) 

,the partition P = {C(a) | a ) into cylinder sets 

again maximizes entropy, so in case 

 



a

aPaPfh )(log)()(
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For example, the Bernoull shift corresponding to a 

biased coin flip, say ,
3

2
)0(,

3

1
)0(  PP  has 

entropy .2log2log
3

2
3log)( fh  

The idea of using shanna entropy in this way was 

suggested by Kolmogorov [kol58] (and refined by 

Sinnai [sin59], who showed that hµ(f) invariant under 

measure-theoretic equivalence of dynamical systems 

and used this to prove the existence of non-equivalent 

Bernoulli shifts. Subsequences Ornstein[Orn74] 

showed that for a large class of ergodic systems 

(including Bernoulli shift[Orn70]) hµ(f) is complete 

invariant , tow systems from this class are equivalent 

precisely if they have the same (measure-theoretic) 

entropy.  

Topological entropy 

Adler ,Konheim and Mc.Andlrew [AKM65] 

formulated an analogue of hµ(f) when the measure 

space (X,µ) is replaced by a topological space and f is 

assumed continuous. They replaced the partition P 

with an open cover and the entropy H(P) with 

logarithm of the minimum cardinality of sub cover 

.They resulting topological entropy, htop is an invariant 

of topological conjugacy between continuous maps on 

compact spaces. 

A more intuitive formulation of htop(f) , given 

independently by Bowen [Bow7] and Dinaburg 

[Din70], uses separated sets in a (compact) metric 

space. 

Separated sets 

Let us again model observation vai instruments with 

finite resolution, but this time using a (compact) metric 

d on on our space X. We assume that our instrument 

can distinguish points x, x'X precisely if d(x,x') ≥ ε 

for soe positive constant ε. A subset  

XE   is ε-separated if our instrument can 

distinguish the points of E. compactness puts a finite 

upper bound on the cardinality of any ε-separated set 

in X, and we can define  

 maxsep[d,ε,X] = max{card[E] | XE  is ε-separated 

with respect to d } 

On the circle, using d normalized arclenght 

 jd
Zj




'min))'exp(),(exp(  . 

Any set of N equally spaced points 

}1,...0){exp())(exp(  Nj
N

j
EN   

Is a maximal ε-separated set whenever 1/N+1< ε ≤ 

1/N, so 

 maxsep[d,1/N,S1] = card[EN(x)]=N 

The sequence space  N has a natural topology as the 

countable product of copies of the alphabet  (which 

is given the discrete topology) this is captured in the 

mtric 

 d(x,x') = 2-δ(x,x') 

 where δ(x,x') = 1+min{i| xi≠ x'i } 

Note that if two sequences x,x' have different initial 

words ω,ω' of length n (i.e ,xC(ω), x'C(ω), |ω|=|ω'| 

= n and ), ω≠ω' ), then δ(x,x') ≤ n,so C(ω) and C(ω') 

are at mutual distance at least 2-n, and each such 

cylinder has diameter 2-(n+1).It follows that a set 

consisting of one representative from each cylinder set 

C(ω),ω  n, is a maximal 2-n _separated set, and 

since there are (card| |)n words of length n, 

 maxsed[d,2-n,  N] = (card| |)n . 

Bowen-Dinaburg deinution of topological entropy 

Now we introduce dynamics map via a continuous 

map f: X→X, and ask about the resolution of n 

successive observations separated by unit time 

intervals. This is captured in the Bowen-Dinaburg 

metrics, defined for n = 1,2,… by  

)).'(),(()',( max xfxfdxxd ii

njo

f

n



  

Tow points x,x'   X cannot be distinguished by our 

sequence of measurements if they (n,ε)-shadow each 
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other (i.e, d(fi(x),fi(x')) < ε for i=0,…,1). So the 

points of XE  are distinguished precisely if any 

tow x≠x' E have df
n(x,x') ≥ ε that is E is ε-

separated with respect to df
n, or (n,ε)-separated. 

The number of distinguishable orbit segments of 

length n is thus 

 

}),(][max{],,[max separatednXisEEcardXdesp f

n  

 

For the angle-doubling map, note that if d(x,x')≤1/4 

then d(f(x),f(x'))=2d(x,x'). In particular if 

 d(x,x') = 2-k  

for some k ≥ 1 then 

 












kjfor

kjfor
xfxfd

kj

jj

0

2
)'(),((   

 And, noting that f(E2
k(x)) = E2

k-1(f(x)), we see that 

E2
k(x) is  

. 2-k-separated with respect to d, and 

. (n, ε)-separated for any ε≤ 1/2 if n≥k  

In particular, for 0 < ε < 1/2 and n > log1/2 ε, 

 maxsep[df
n, ε,S1] = card[E2

n(x)] = 2n . 

An (n, ε)- separated set is analogous to a collection of 

different itineraries of length n (with respect to some 

partition whose atoms have diameter ε ). Since the 

number of conceivable itineraries grows exponentially 

with n, it is natural to {en} of positive real numbers, 

we write  

 nnn e
n

eGR log
1

suplim}{   . 

The complexity of the dynamics emanating from any 

subset XK   is reflected in 

}.,,[{max),( lim
0

KdsepGRKfh f

nrop 


  

Our primary interest is is when K=X the topological 

entropy of f: X→X is 

).,()( xfhfh toptop   

We have seen that the angle doubling map has 

topological entropy log2 , in fact the analogous angle-

stretching maps ζk : x→xk (k≥2) satisfy 

 htop(ζk) = logk . 

A beautiful general relation between measure-theoretic 

and topological entropy was established through the 

work of Goodwyn [Goo69], Dinaburg [Din70] and 

Goodman[Goo71]. 

Theorem 1 (Variational Principle for Entropy)  

For f :X→X any continuous map on compact metric 

space, 

 htop(f) = sup{hµ (f)|µ is an f –invariant Borl probability 

measure on X }. 

One-sided subshifts 

The shift map on the sequence space  N 

S(x0x1x2…) = x1x2… 

Is a card[ ]-to one map, continuous with respect to 

the product topology. A subshif we mean the 

restriction f: X→X of the shift to the shift to a closed 

invariant subset 
NX   , Such a is determined by 

its admissible words: for n = 1,2,…, let 

}.1,...,0,,...{)( 10   njxwithNiXxXW jji

n

nn 

 

Note that a word which appears starting at position I in 

x   X appears as the initial sub word of fi(x), which 

also belongs to X if X is shift-invariant. Thus Wn(X) 

equal the set of words 
n  with X∩C(ω) 

nonempty, and it follows that a maximal 2-n-separated 

set XEn   results from picking one representative 

from each such nonempty intersection. Thus for 2-(k+1) 

< ε < 2-k , En+k is a maximal (n,ε)-separated set, and 

maxsep[df
n,ε,X] = card [Wn+k(X)] 

Given us for any subshift f:X→X 

)]}.([{)]}([{)( 1lim XWcardGRXWcardGRfh nkn
k

top  
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We spell out the results of this calculation for 

severalexample. 

Full shift : When Wn= n, so X= N , we have  

 htop(f)=GR{card[ ]n}=log card [ ]. 

”Golden Mean” Shift : Define X as the of al the set 

sequences of 0’s and 1’s in which 1 is never followed 

immediately by it self, so W2(X)={00.01,10}. If we 

list all words of length n, then the words of length n+1 

come from either followed an arbitrary word of length 

n that ends in 0 with a 1. If we set  

 ωn= card[Wn(X)]. 

We see there are ωn words of length n+1 which end in 

0, and hence ωn+1 which end in 1. this gives the 

recursive relation  

 ωn+1 =ωn +ωn-1. 

Showing that ωn grows at the same rate as the 

Fibonacci number Fn (in fact ωn =Fn+3) . This rate is 

known [LM95,p.101] to be the logarithm of the golden 

mean, so  

 ).
2

51
(log}{}{)(


 nntop FGRGRfh   

A generalization of this example arises form any finite 

alphabet ={a1,…,an} and a list 
2aW  of allowed 

pairs; X is then defined as the set of all sequences in 

N for which every subword of length 2 belongs to 

Wa. This information can be encoded in a square 

transition matrix A of size N= card[ ] whose (i,j) 

entry is 1 (resp.0) if the word ai,aj belongs (resp. dose 

not belong ) to Wa. Note that the (i,j) entry of a power 

Ak of the A equals the number of admissible words of 

length k+1 which begin with ai and end with aj, so 

ωn=card[Wn(X)] equals the sum || An-1|| of the entries 

of An-1, and we have  

 htop(f)=GR{ ωn}=GR{ || An-1|| }= log (spectral radius 

of A). 

In the special case of the ”golden mean ”shift, we have  

 A = 








01

11
  

Whose characteristic polynomial, t2-t-1, has the golden 

mean an its larger root.  

Even shift: Let X be the set of sequences of 0’s and 1’s 

in which tow successive appearances of 1 are 

separated by a block of consecutive 0’s of even length 

(with may be the empty block, of length zero). This is 

most easily described by giving a list Wd of disallowed 

words, in this case: 

Wd={1(0)2n+11| n=0,1,…} 

And specifying that X consists of all sequences in 

which no word from Wd appears (any where). 

In general, such a description essentially specifies a 

basis of open subset of the complement  N/X. When 

such a list is (or can be made) finite, a recoding allows 

us to previous case by the allowed (or disallowed) 

pairs. This is called a subshift of finite type (or 

topological Markov chain). 

The ”even ” shift is clearly not of finite type, as no lest 

on words of bounded length can detect long forbidden 

words. However, it can be shown [LM95,p.103] that in 

this case card[Wn] = Fn+3 -1 (where again fn is the nth 

Fibonacci number), so the even shift has 

)
2

51
(log}{}1{)( 3


  nntop FGRFGRfh .D

yck shift: This beautiful example, first suggested by 

Krieger [Kr172] and named after an early contributor 

to the study of free groups and formal languages, 

codifies the rules of matching parentheses. As it is 

readily accessible in the literature, I give a detailed 

account based on ideas I learned Doris and Ulf Fiebig. 

The alphabet consists of N pairs of matching left and 

right delimiters 

   ={ℓ1,γ1,…,ℓN,γN}. 

For example, when N = 2, we can think of γ  

 ℓ1= ”( ” ,γ1,=”)” ,ℓ2 = ”{ ”,γ2 = ”}”. 
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Call a word ω =ω0 ,…,ω2k-1 of even length balanced if 

its entries can be paired subject to: 

. a pair of entries consists of a left delimiter to the of a 

matching right delimiter if ώα is paired with ώβ, where 

0 ≤α ≤ β ≤ 2k-1. then ώα = ℓi for some index I and ώβ = 

γi for the some index. 

. distinct pairs are nested or disjoint : given α < β as 

above, every intermediate ώγ (α < γ < β ) is paired with 

some other intermediate ώδ ( α < δ < β ) . 

Note that a pairing of this type is unique if it exists. 

We regard the empty word as balanced. 

Now we specify the (infinite) list of disallowed words 

as 

 Wd = {ℓi bγj │ b is a balanced word i≠j }. 

The subshift on the set of sequences ŊN N in 

which no element of Wd appears is the (one –sided) 

Dyck shif on N pairs. When N = 1, Wd is empty, so Ŋ1 

is the full shif on two symbols, we will tacitly assume 

that N≥ 2. 

Proposition 1: The Dyck shift f: ŊN→ŊN on N pairs 

has htop(f)=log(N+1).  

Proof: 

 An admissible word has the general form 

 ω = b0γi1 b1γi2 …bk-1γik bkℓj1bk+1…ℓjmbk+m 

where each bα, α=0,…,k+m, is a (possibly empty) 

balanced subword. 

And the k≥0 right delimiters which are not matched in 

ω all occur to the left of he m≥0 unmatched left 

delimiters in ω. This lead to a natural decomposition 

of any admissible word as a concatenation of three 

(possibly empty) subwords 

 ω = ABC 

where B =bk is balanced, while A = b0…γik (resp. C 

=ℓj+1…bk+m) ends (resp. starts) with an unmatched 

right (resp. left) delimiter. 

To calculate the topological entropy, note first that 

every admissible word ω is the initial subword of at 

least N+1 admissible words of length │ω│: the N 

word ωℓi, i=1,…,N are always admissible if m=0. thus  

 card[Wn+1] ≥ (N+1)card [Wn] 

for all n, and so 

card(f)=GR{card[Wn]} ≥ log(N+1) 

To handle the opposite inequality, we estimate the 

cardinality of the sets An, Bn, Cn of admissible words 

of length n whose decomposition has only one 

nonempty factor, of the type indicated by the letter.  

We begin with balanced words: since Bn= φ for n odd, 

assume n=2p. To estimate card[Bn], we note that the 

number of possible configurations of p ”ℓ” ’ s and ”γ” 

’s in a balanced word of length n is balanced above by 










p

n
, and for each such configuration, once we have 

assigned an index to each ℓ (which we can do in NP 

ways), the uniqueness of the pairing insures that the 

word has been determined. Thus  

 card[Bn] ≤ 








p

n
 Np < (N+1),  

where the last inequality is a consequence of the 

binomial theorem. We now consider the set Cn of 

words beginning with an unmatched left delimiter, 

noting that the initial length k subwords of any ω   Cn 

itself belong to Ck. Given ω   Cn , we immediately 

have ωℓi   Cn+1 for i = 1,…,N and ωγi   Cn+1 

provided that ω has at least tow unmatched left 

delimiters, the last of which is ℓi. This given us  

card[Cn+1] ≤ (N+1)card[Cn] 

and since card[C1]=N,   

card[Cn] ≤ (N+1)card[Cn]n. 

A similar estimate can be obtained for card[An], either 

by repeating the the argument or by noting the 

bijection between An and Cn obtained by reversing 

letter order and interchanging ℓ with γ (keeping 

indices). 
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Finally, to estimate card[Wn] we consider, for each 

ordered triple (i,j,k) of nonnegative integers summing 

to n, the of words of the from ω = ABC with │A│= i, 

│B│= j, and │C│= k, Since an arbitrary factoring is 

possible, the number of such words is  

 card[Ai]. card[Bj]. card[Ck] ≤ (N+1)i+j+k= (N+1)n.  

But the number of possible triple (i,j,k) summing to n 

is less than (n+1)3, so  

 card[Wn] ≤ (n+1)3 (N+1)n. 

The growth rate of the right-hand quantity is log(N+1), 

so 

 htop(f) =log(N+1).  

■ 

Square-Free Sequences: An even more complicated 

subshift is defined by forbidding any subword to 

immediately follow a copy of itself: 






 
1

2 }/{
k

k

dW  . 

An elementary argument shows that   must have at 

least three letters for this to. Give a nonempty subshift. 

For three (or more) letters, there exist square and it is 

known [Bri63] that htop(f)>0. Although there are some 

known bounds for the entropy [Gr01, She81a, She81b, 

SS82], a precise value has been determined.  

Pointwise primage entropy  

There is a curios asymmetry in the definitions of 

entropy in [1-2] which look only at the future behavior 

of points. When f is invertible, it turns out that the 

inverse map f-1 has the same entropy: for htop(f) this 

follows from the observation that x and x' (n,ε)-

shadow each other under a homeomorphism f 

precisely if their f(n-1)-images (n,ε)-shadow each other 

under f-1. 

However, when f is not invertible the iterated 

preimage f-n[x] of a point are in general sets rather 

than points, so the formulations in [2] cannot be 

reversed in time. In 1991, Langevin and Walczak 

[LW91] built on ideas from their earlier work with 

Ghys (on the ” entropy”of a foliation) to formulate an 

invariant based on the behavior of preimages. We 

direct the interested reader to their original paper or to 

[NP99]for more details on this invariant, whose 

definition is rather involved, it is related to and often 

equals, the branch preimage entropy which we present 

in [5]. 

Instead we begin with a more accessible pair of 

invariant definition by Hurley [Hur95] in 1995. 

looking at the growth rate of the size of iterated 

preimages of a point, measured via the Bowen-

Dinaburg metrics. The two invariant differ in the stage 

at which one globalizes the pointwise measurement by 

maximizing over xX : 

]]}[,,[max{maxlim)(

]]}[,,[max{limsup)(

0

0

xfdespGRfh

xfdsepGRfh

nf

nXxm

nf

nXxp





















  

We refer to hp and hm collectively as pointwise 

preimage entropys both are invariant of topological 

cojugacy [NP99] and we have the truvual inequalities  

 hp(f) ≤ hm(f) ≤htop (f). 

There are examples for which either of these 

inequalities is strict any homeomorphism with htop(f) > 

0 works for the second inequality (since f-1 [x] is a 

single point, both pointwise preimage entropies are 

zero ) and an example for the first is given in [FFN03]. 

However, the thrust of our discussion in this section 

and the next is that there are many cases when the 

three invariant agree. (We will also see this from a 

different perspective in [5.2.]. 

For angle-doubling map, we note that the nth iterated 

preimage of a point consists of 2n equally spaced 

points: 

 f-1[x] = E2
n(xn)  

where xn is any nth preimage of x for example if x = 

exp(0) we can take x=exp(2-n0). Since this set is (n,ε)-
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separated if ε ≤ 2-n (or n ≥ log1/2ε), we have 

independent of xS1, 

maxesp[df
n,ε,f-n[x]]=card[f-n[x]]=2n 

so hp(f)=hm(f)=log2. 

A similar argument gives the common value logk for 

hp(ζk) amd hm(ζk) where ζk is the angle-stretching map 

x xk , k=3,4,… .  

Pointwise preimage entropy for subshifts 

If xX  N is a point in the shift-invariant set X, its 

nth predecessor set (in X) consists of all the words 

ω n of length n such that the concatenation ωx also 

belong to X:  

 Pn(x) =pn(x,X) ={ ω n/ ωxX}. 

Note that by definition pn(x,X) Wn(X). Clearly the 

nth iterated perimage of x under the subshift f: X→X 

is the set of all concatenations ωx ,ω pn(x,X), so 

from our earlier calculations, when 0 < ε ≤ 1/2 and 

xX 

maxesp[df
n,ε,f-n[x]]=card[pn(x)]. 

This immediately gives 

)]}([{max)(

)]}([{sup)(

xpcardGRfh

xpcardGRfh

nXxm

nXxp








 

Again we trace the application of this through our 

examples of subshift: 

Full shift: Clearly pn(x,N) =  n for all x N, so 

 hp(f) = hm(f) = log card[ ]. 

Subshifts of Finite Type: When X is defined by the 

transition matrix A, the predecessor set of any xX is 

determined by its initial entry, x0. If we pick x0 so that 

this column sum grows (with n) at least as all the other 

columns, then any xX beginning with x0 has a 

maximal growth rate, and this equals the growth rate 

of ║An║, so  

 hp(f) = hm(f) = GR{ ║An║} = log(spectral radius of 

A). 

Even shift: The predecessor set of a sequence in the 

even shift is determined by te of the location first 1 in 

the sequence: if x = 0∞ then pn(x) = Wn(X), while if xk 

= 1 and xi = 0 for all i< k, then ωWn(X) belongs to 

pn(x) if either ω = 0n or ends with 10ℓ, where ℓ has the 

same parity as k. Thus pn(x) is in one –to-one 

correspondence with the set of admissible words of 

length n+2 (resp. n+1) ending with 01 (resp. 1) if k is 

odd (resp. if k is even or x = 0∞ ), and our either 

considerations show that all of these sets grow at the 

rate  

.
2

51
log)()(














 fhfh mp   

Dyck Shift: If x is a sequence formed by concatenating 

infinitely many balanced words, then 

 Pn(x,ŊN) = Wn(ŊN) 

So 

hp(f) = hm(f) = GR{card[Wn(ŊN)]} = log(N+1). 

Square-Free Sequences: The predecessor sets in this 

subshift vary wildly from point to point (cf[5.1] and 

the tools used in the other cases tell us nothing about 

pointwise preimage entropy in this case. 

The alert reader will have noted that in all the cases 

expect the last, the pointwise preimage entropies hp(f) 

and hm(f) agree not only with each other but also with 

the topological entropy htop(f). This is not accident. 

Theorem 2 ([FFN03]) For any one-sided subshift f: 

X→X, if  

 GR{WnX}=logλ 

Then there exists a point pX such that card[Pn(p,X)] 

≥ λn for all n = 1,2,… . 

The argument for this rests on a combinational lemma 

concerning the growth of branches in a tree saying 

roughly that if we pick a "root" vertex and have, for 

some N, than λN vertices at distance N from the root, 

then for some k (depending on λ, N, and the maximum 

valence of vertices in the tree ) there exists a vertex v 

such that for I = 1,…,k the number of vertices at 
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distance I from v, in direction away from the root, is 

not least λi.  

Entropy points 

The phenomenon described for one-sided subshifts in 

the preceding section that the preimages of some point 

determine the topological entropy never occurs for 

homeomorphisms with positive topological entropy 

(e.g. most tow sided subshifts), since any preimage of 

point is still a single point. However, it is possible to 

resolve this cognitive dissonance via a calculation of 

topological entropy in the spirit of pointwise preimage 

entropy –looking at preimages of local stable sets 

instead of points.  

For ε > 0, the ε-stable set of xX under the map f: 

X→X is  

 S(x,ε,f) = {yX│d(fi(x),fi(y)) < ε for all i≥0 }. 

(This is just the intersection of ε-stable with respect to 

the various Bowen-Dinaburg metrics.) We can define 

a kind of "ε-local preimage entropy" by  

)]]}.,,([,,[{max),,( lim
0

fxSfdsepGRxfh nf

ns 







  

 Recall that a map f: X→X is forward-expansive if for 

some expansiveness constant c > 0, every ε-stable set 

for 0 < ε ≤ c is a single point (i.e., S(x, ε,f ) = {x} 

whenever ε ≤ c and xX. Every one-sided shift, as 

each of the angle-stretching maps on s1, is forward-

expansive. Clearly forward-expansive maps, 

),,()( sup xfhfh s

Xx

p



   

Whenever 0 < ε ≤ c, More generally though we have 

Theorem 3 ([FFN03]) If X is a compact metric space 

of finite covering dimension, then for every 

continuous map f: X→X and every ε > 0, 

).(),,(sup fhxfh tops

Xx




   

It is possible, adapting an argument of Mane [Man79], 

to show [FFN03] that forward-expansive of f: X→X 

implies finite covering dimension for X (if it compact 

metric), immediately implying the equality hp(f) =hm(f) 

=htop(f) in this case. Theorem 2 shows that for one-

sided shifts, the supremum in Theorem 3 is actually a 

maximum. This leads us to consider the set of entropy 

point of a continuous map f: X→X, defined as  

)}.(),,({)( lim
0

fhxfhXxf tops 





 Point 

of ε(f) are those near which the local "backward" 

behavior reflects the 

topological entropy of f. 

How big is the set ε(f) of entropy points for a general 

map f: X→X? For one-sided subshifts, ε(f) is always 

nonempty, but there are examples where it. Is nowhere 

dense in X, and there are examples of other continuous 

maps with ε(f) = φ [FFN03]. A number of conditions, 

given in [FFN03], imply ε(f) ≠ φ ,the most general of 

these was defined by Misiurewiez (modifying a notion 

due to Bowen) a continuous map f: X→X is 

asymptotically h-expansive if  

0)),,(,(suplim
0




fxSfhtop

Xx




 

In effect, this says that ε-stable sets for small ε > 0 

look almost like point from the perspective of 

topological entropy. We have 

Theorem 4 ([FFN03]) Every asymptotically h-

expansive map on compact metric space has 

 ε(f) ≠ φ 

Forward-expansive maps are automatically 

asymptotically h-expansive, but the latter class is far 

larger in particular. 

Theorem 5 ([Buz97]) Every C∞ diffeomorphism of a 

compact manifold is asymptotically h-expansive .  

Branch preimage entropy 

In formulating the pointwise preimge entropies, one 

focuses on the preimage sets f-n[x] individual points. 

These sets have natural tree-like structure. With 

preimage points as "vertices" and an "edge" from z 

f-n[x] to f(z)  f-(n-1)[x], and one can try to examine 

the structure of branches in this tree sequences {zi} 
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with z0 = x and f(zi+1) = zi for all i. The idea of the 

Langavin-Walezak invariant [LW91], which compare 

points x,x' X by means of their respective branch 

structures, was used by Hurley [Hur95] to formulate 

an invariant that fits our general context and in many 

natural cases equals that defined by Langevin and 

Walezak [LW91]. 

A complication fir both formulations is that if map is 

surjective. Some brances may terminate at points with 

no preimage, to avoid this largely technical distraction, 

we will assume tacitly that f: X→X is a surjection.  

Recall that for any compact metric space (X,d), there 

is an associated Haus-dorff metric  d which makes 

the collection  (X) of nonempty closed subsets of X 

into a compact metric space for K0,K1  (X) ,  

)]}.',([{),( infsupmax
1'1,0

10 xxdKKd
ii

KxKxi 

  Given 

f: X→X a continuous surjection, we can apply the 

Hausdorff extension to the Bowen-Dinburing metrics 

df
n to define a sequence of branch metrics on X via 

 db
n(x,x') =  df

n (f-n[x],f-n[x'])  

That is x ω X is branch close to xX if every ranch at 

x is shadowed by some branch at x', and vice-versa. 

Applying the usual mechanism to these metrics yields 

the branch preimge entropy 

]}.,,[{max)( lim
0

XdsepGRfh f

nb 


   

Standard arguments apply to show that topologically 

conjugate maps have equal branch preimage entropy. 

When f is a homeomorphism, this equals the 

topological entropy, but in general hp(f) acts very 

differently from htop(f) a number of general equalities 

(some times strict) for hb(f) [NP99].  

One can think of hb(f) as measuring the homogeneity 

of the preimage sets of two points x,x'S1 under the 

angle-doubling mp are rotations of each other, yielding 

db
n(x,x') = d(x,x') and hence hb(f) = 0, this argument 

has a natural extension to any self-covering map f : 

X→X. 

Branch priemage entropy for subshits 

Suppose that f : X→X is the restriction of the shift 

map to some (shift-invariant) closed subset 
NX  . 

We have already seen that priemage sets can be 

identified with predecessor sets 

 f-n[x] = {ωx│ωPn(x,X)}. 

Suppose now that x,x'X have different (n+k)th 

predecessor sets say ω = ω0,…,ωn+k-1Pn+k(x)\ pn+k(x'). 

which means that z = ωx belongs to fn-(n-k)[x], but for 

any z'f-(n+k)[x'] we have z'= ω'x', where ω = 

ω'0,…,ω'n+k-1 and ω'I ≠ ω'j for some j<n+k. If we let i = 

min(j,n), then the initial k-words of fi(z) and fi(z') are 

distinct so 

 df
n(z,z') ≥ 2-k . 

and this shows that whenever Pn+k(x) ≠ Pn+k(x') as sets,  

 db
n(x,x') ≥ 2-k . 

But if ωPn+k(x)∩Pn+k(x') then z = ωx and z' = ω'x' 

satisfy df
n(z,z') ≥ 2-k, it follows that  

 maxesp[db
n, 2-k , X] = NPn+k[X]. 

where NPm[X] denoted the number of distinct mth 

predecessor sets Pm(x) (as x ranges over X). So e have 

, for any one –sided subshift f : X→X, 

]}.[{]}[{)( lim XPNGRXPNGRfh nkn
k

b  


Here 

are details of this calculation for our earlier examples. 

Full shift: Since 

.0)(1][,),(  fhandnallforPNxallforxP b

N

n

NnN

n

Subshift of Finite Type : We saw earlier that Pn(x) is 

determined by x0, so NPn[x]≤ card[ ] for all n, and 

hb(f) = 0. 

Sofic subshifts: We saw that even shift precisely two 

distinct nth predecessor sets for each n, so NPn[x] = 2 

for all n hb(f) = 0. In general, a subshift f : X→X is 

called sofic if NPn[x] has a finite upper bound as n→∞ 

, Benjamin Weiss [We173] showed that f : X→X is 
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sofic precisely if there is subshift of finite type g: 

Y→Y and a continuous surjection XY : such 

that   fg  (i.e , f is a factor of g ). All sofic 

subshift clearly have hb(f) = 0. 

Dyck shift: Any balanced word can precede any 

sequence in ŊN: more generally if ω = ABCWn (as in 

[2.2.3]) then if C is empty, ωPn(x, ŊN) for all xŊN 

. If C≠θ, the unmatched left delimiters in C must 

match the first unmatched right delimiters (if any) in x. 

To be precise, suppose ωWn has m ≥ 0 unmatched 

left delimiters, ℓj,…,ℓjm (reading left to-right in ω) and 

xŊN has 0 ≤ р ≤ ∞ unmatched delimiters, let q = min 

(m,p) ≤ n and suppose the first q unmatched right 

delimiters in x are rs0,…,rsq (reading left-to-right in x). 

Then ωPn(x) precisely if the indices match, moving 

in opposite in and directions in x and ω : 

 Si = jm-i for 0 ≤ i ≤ q.  

This show that the predecessor set Pn(x) determined 

by the indices of the first n (or if x has fewer) 

unmatched right delimiters in x, NPn[ŊN]thus equals 

the number of sequences of length n or less of indices 

from {1,…,N}, or  

 [nNP ŊN] 



n

i

ni NnN
0

)1(    

which has growth rate 

 hb(f, ŊN) = GR{(n+1)Nn} = logN . 

(For comparison recall that htop(f, ŊN) = log(N+1).) 

Square-Free Sequences: We show as in [NP99] 

that if  is an alphabet on has infinite branch 

preimage entropy. 

Pick three distinguished letters from  and 

β=b0b1b2… 

A square-free sequence in just these three 

letters. The complement *of these letters in still 

has at least three letters, so we have the nonempty 

subset X*  X of square-free sequences which have no 

letter in common with β. 

We will produce, for every subset EWn(X*) 

of square-free words in *, a sequence xEX whose 

predecessor set in X intersects Wn(X*) precisely in E:  

 Pn(xE,X)∩(  *)n = Pn(xE,X)∩ Wn(X*) = E. 

When E = Wn(X*), xE = β works since for 

AWn(X*) the sequence Aβ is square-free. 

Otherwise, consider the complement  

 F = Wn(X*) \ E = {A0,A1,…,Ak}  

And for i = 0,…,k let Bi = b0…bi  

Be the initial subword of length i+1 in β. 

We can exclude A0 from Pn(xE) by making sure 

the initial subword of xE is b0A0b0, for example if k = 0 

(so E = Wn(X*) \ {A0} we can take 

 xE = b0A0b0b1b2… = B0A0β : 

any word A ≠ A0 in  * which is square-free 

belongs to the predecessor set. If k ≥ 1, we exclude A1 

(in addition to A0) by making sure that an initial word 

ω1 of xE is followed by A1 ω1, we shall take 

 ω1 = b0A0bob1b2… = B0A0B1 so 

xE = b0A0b0b1A1b0A0b0b1b2… = ω1A1 ω1b2… = 

B0A0B1A1B0A0β. 

For I = 1,…,k-1, define ωi+1 recursively by  

 ωi+1 = ωiAiωibi+1 . 

noting that for AWn(X*), Aωi+1is square-free 

precisely if A is distinct from A0,…,Ai. (The 

observation that ωi+1is itself square-free requires a little 

thought .)Note also that ωi+1 ends Bi+1. Thus, the 

sequence 

 xE = ωkbk+1bk+2… 

is square-free, and its nth predecessor set 

intersects Wn(X*) precisely in E, as required. 

This shows that the number NPn[X] of distinct 

nth predecessor sets for X is bounded below by the 

number of distinct subsets of Wn(X*), or 2ωn (where ωn 

= card[Wn(X*)]). But we know that ωn has positive 
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exponential growth rate (since X* has positive 

topological entropy). And hence 























2log}2{]}[{)( suplim
n

nGRXNPGRfh

n
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 Hurle’s inequalities 

The main result of Hurle’s paper [Hur95] is a 

beautiful inequalities relating pointwise, branch and 

topological entropy: 

Theorem 6 ([Hur95]) For any continuous map f 

: X→X on a compact metric space, 

 hm(f) ≤ htop(f) ≤ hm(f) +hb(f).  

In particular, for any map with branch preimage 

entropy zero, pointwise preimage entropy 

automartically agrees with topological entropy. We 

have seen that this occurs for subshifts Theorem 2 

appears to provide the only proof that hm(f) = htop(f).  

Several other classes of maps are know to have hb(f) = 

0 (and hence hm(f) = htop(f)): 

. A forward-expansive map on a compact 

manifold is automatically a self-covering map [HR69] 

and so has branch entropy zero (as noted earlier in this 

section). 

. Any rational map f(z) =p(z)/q(z) (p,q polynomials) 

on the Riemann sphere has zero branch preimage 

entropy [LP92]. 

. If X is homeomorphic to a finite group 

(including the interval and circle) then every 

continuous map f : X→X has branch preimage entropy 

zero [NP99]. 

Natural extensions 

Given f : X→X a continuous map on compact space, 

define the space  

Xˆ= Xˆ
f= {xˆ=…x-1x0x1…Xz│f(xi) =xi+1 for all iZ} 

9with the induced product topology) and the 

projection π: Xˆ→X via π(xˆ) =x0. 

The image of the projection is the eventual 

range of f  

 





0

][][
i

i XfX  

Which is homeomorphic to the quotient space 

Xˆ/ π. The shift map fˆ : Xˆ→Xˆ 

[f(xˆ)]i =xi+1 , i Z 

Is a homeomorphism called the natural 

extension (or inverse limit) of f : X→X. 

In effect, Xˆ
f separates the various prehistory's 

of points note that for xˆXˆ, x0= π(xˆ) determines all 

xi with i ≥ 0. 

The natural extension of the angle-doubling map 

can be identified with the "solenoid" of samale 

[Shu80,4.9], [KH95,17.1], while the natural extension 

of a one-sided subshift 
NX  is the two-sided 

subshift Xˆ z specified by the same list of 

disallowed words. In general, htop(fˆ) = htop(f).  

Of course, topologically conjugate maps have 

topologically conjugate natural extension, but the 

converse is not always true. The following example 

was shown to me by Bob Burton. 

Consider the coding  2:  which 

assigns to each word 
2 of length 2 in the 

alphabet = {0,1} a letter Φ(ω)  in the alphabet 

 = {1,2,3} via 

 Φ(01) = 1 

 Φ(11) = 2 

 Φ(00) = Φ(10) = 3. 

Any such coding induces a continuous map 

hˆ:
zz  via hˆ(xˆ) = yˆ, where  

 yi = Φ(xi-1xi). 

The image hˆ[
z  ] is the subshift Xˆ z  with the 

transition matrix 

 A =

















101

110

110
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Furthermore, yi determines xi, so hˆ is a 

homeomorphism between 
z and Xˆ z  which 

conjugates the shift maps on these spaces. 

However, the one-sided subshift f : X→X 

defined by the transition matrix A cannot be 

conjugated to the (full) shift on N, because for y = 

y0y1…  X, f-1[y] has cardinality numerically equal to 

y0{1,2,3}, while every x N has precisely two 

preimages. 

The two one-sided subshifts are both of finite type, so 

automatically satisfy hb(f) = 0. But more generally, the 

following is true: 

Theorem 7 If f : X→X and g : Y→Y are both forwrad-

exponsive with topologically conjugate natural 

extension fˆ : Xˆ→Xˆ and gˆ : Yˆ→Yˆ ,then hb(f) = hb(g). 

this theorem was first conjugative by Bob 

Burton, with whom I unsuccessfully sougth a proof 

several years ago. I know of two arguments for this 

fact, both unpublished. One proceeds by analyzing the 

structure of conjugative between natural extensions 

(which for forward-expensive maps come from a kind 

of generalized coding) and using it to estimate the 

growth rate of maxsep[db
n,ε,X] for ε < c. The other is 

based on "lifting" hb(f) to fˆ by a trick similar to our 

replacement of points with local stable sets in 

[4].Unlike the situation three the when f is forward-

expansive. Both arguments are due to Doris and Ulf 

Fiebig, with some contribution on my part to the first 

one. 

Pressure and Hausdorff dimension 

In the contex of an abstract "theormodynamic 

formalism" for dynamical systems, Ruelle 

[Rue73,Rue78] modified the concept of topological 

entropy, replacing the number maxsep[dbn,ε,X] of n-

oribt segments with a "weighted" count,the weights 

coming from a function Φ, to get the topological 

pressure of Φ with respect to f. To precise given f : 

X→X a continuous map and Φ :X→R a continuous 

real-valued function, the sum of Φ along the n-orbit 

segment starting at xX is denoted 

 





1

0

))(()(
n

i

i

n xfxS   

And for ε > 0 we consider  





ExE

nenfN
8sup),,,(   

The supremum taken over all (n, ε)-separated 

sets in X. The topological pressure of Φ with respect to 

f is then )}.,,,({)( lim
0

nfNGRPf 





  

It can be shown that Pf(Φ) is either always finite 

or always infinite for all ΦC(X), the space of 

continuous real-valued functions on X, and when finite 

Pf:C(X)→R is monotone, convex and continuous. It is 

also clear that the topological pressure of the constant 

zero function is the topological entropy: Pf(0) = htop(f). 

There is fascinating connection between 

topological pressure and hausdrff dimension of certain 

invariant sets. This connection was first noted, in the 

context of Fuchsian groups, in Bowen’s last paper 

[Bow79] (published posthumously) and in generally 

referred Bowen’s formula. For any strictly negative 

ΦC(X), the function t→ Pf(t,Φ) has a unique zero tΦ. 

Ruelle showed [Rue82] that if f is C1+α and J is a 

conformal repelled (J is the closure of some recurrent 
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f-orbit, and the derivative multiplies the length of all 

vectors at xJ by a factor α(x), where α(x) > 1 for all 

xJ ) then the Hausdorff dimension HD(J) of J equals 

tΦ, where Φ(x) = -log α(x). 

Analogous results for saddle sets of surface 

diffeomorphism were obtained by Manning et al 

[Man81, MM83]. A saddle set for a diffeomorphism of 

a surface is an invariant set A such that at each x A 

there exist two independent vectors v+,v-Tx A with 

)( vDf n
 going to zero at a (uniform) exponential 

rate as n→±∞. Every point x A then has invariant 

curve W*(x) (its stable manifold) which goes through x 

tangent to v+. The prototype of this is the smale 

"horseshoe" ([Sh86,KH95]),where v± are coordinate 

vectors. The stable dimension at x A of a saddle set 

A is the hausdorff dimension of the intersection of A 

with the stable manifold of x: 

 sd(A,x) = HD(A∩W*(x)). 

If we define ØsC(X) by  

 Øs(x) = log ║Df(v+)║. 

Then, under a few technical assumption we again have 

[MM83] Bowen’s formula 

 sd(A,x) = tΦ. 

The same formula was obtained for the C2 

version of the Henon map by Verjovsky and 

Wu[VW96]. 

When the map is not invertible, the situation 

becomes more complicated.Mihalescu [Mih01] 

showed that in a complex two-dimensional setting, the 

stable dimension of a saddle set for a holomorphic 

endomorphism (with no critical point in the set) has tΦ. 

as an upper bound, but the inequality can be 

strict. By taking account of the minimum number of 

priemages of points in A, Mihailescu and Urbanski 

[MU01] obtained a better upper bound on sd(A). 

In the same paper [MU01], Mihailescu and 

Urbanski also obtained a lower bound using a new 

"entropy " invariant h-(f) which we shall sketch below 

theyshowed that this invariant for the restriction of to 

A, is a lower bound for the stable dimension times the 

super mum of [Øs] on A. Subsequently [MU02] they 

defined two new notions of pressure P-
f(Φ) and Pf-( Φ) 

and used B0wen type formulas to obtain lower and 

upper bound s for stable dimension. 

A notion complementary to that of an ε-

separated set is an ε-spanning set EX ε-spans X if 

every point of X is within distance < ε of some point 

of E.A(set-theoretically) maximal ε-separated subset 

of X automatically ε-spans X, and a minimal ε-spans 

set is 
3


-separated, so in all of our definitions of 

"entropy" we could replace maxsep[d, ε,X] with the 

number  

 minspan[d, ε,X] = min {card[E]│ EX ε-spans}. 

For the Mihailescu-Urbanski invariants it is 

more natural to work with this number.  
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The difference between htop(f) and hb(f), when 

phrased in terms of spanning sets, can be clarified (at 

least when f surjective) by noting that each n-branch 

z0,z1,…,zn-1 of f-1 has a well-define "root" x = z0 and 

"tip" z = zn-1f-n[x] the latter determines the branch 

via f(zi) = zi-1. A set EX ε-spans X in the branch 

metric db
n if the collection of branches rooted at point 

in E, or in terms of "tip", Ef,n = {f-n[x]│xE}   (X) 

, ε-spans Xf,n in the Hausdorff Bowen-Dinabrug 

metric  dn
f which is to say for any xX we can find 

x'E such that every branch rooted at one of x,x' is (n, 

ε)-shadowed by at least one branch rooted at the other. 

However if we consider branches without regard to 

their roots, merely asking for a collection of branches 

which includes an (n, ε)-shadow of every branch, we 

are simply asking for a collection of tips which ε-spans 

X in the Bowen-Dinaburg metric df
n, and so the usual 

machinery in this case leads to htop(f).  

The Mihailescu-Urbanski definitions mix these 

two notions. Let us say that a collection of n-branches 

weakly ε-spans n-branches in X if for any xX we 

find at least one n-branch at x which is (n, ε)-

shadowed by one from our collection. Looking at 

"tips", this amounts to saying we have a collection 

E'X of tips such thst the minimum Bowen-Dinaburg 

distance df
n of any preimage set f-n[x], xX from our 

set E' is at most ε. Dente the minimum cardinality of a 

set E' which weakly ε-spans n-branches in X by 

ω[f,n,ε,X]. and let 

 ]}.,,,[{)( lim
0

XnfGRfh 





  

Note that since any set which (n, ε) spans X also 

weakly ε-spans n-branches in X by  

 ω [f,n, ,ε,X] ≤ minspan[df
n, ε, X] 

so hω(f) ≤ htop(f). 

Going further we say that a collection EX (of 

"roots") very weakly ε-spans n-branches X if the 

collection of all branches rooted at points of E weakly 

ε-spans n- branches in X. The minimum cardinality of 

a set which very weakly ε-spans n-branches in X, 

which we will denote v[f, n, ε , X], is bounded above 

by ω[f, n, ε , X], since if E' is the set of "tips" for a 

weakly ε-spanning set of n-branches, then the 

corresponding set E = fn[E'] of "roots" is a very weakly 

ε-spanning set cardinality less then or equal to 

card[E']. Thus the "entropy" defined using v[f, n, ε , 

X], 

)()()(

]},,,[{)( lim
0

fhfhfh

satisfies

XnfvGRfh

topv

l
v












  

Further more any set which ε-spans X in the 

branch metric db
n also weakly ε-spans n-branches in 

X,so 

 v[f , n , ε, X] ≤ minspan[db
n, ε, X] 

Which implies hv(f) ≤ hb(f). 

to define the corresponding notion of pressure 

we set for f : X→X and ΦC(X). 
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Where the infimum is taken over sets E' of 

"tips" for collections which weakly ε-spans n-branches 

in X, and 
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Where the infimum is taken over sets E (of "roots") 

which very weakly ε-spans n-branches in X. 

It can be shown [MU02] that these are invariant 

in the sense that if f : X→X and g : Y→Y are maps 

conjugated by the homeomorphism h : X→Y (h  f = 

g h), then for any ΦC(X), 

 
)()(
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Note that when Φ is the constant zero function 

then 
)(zSne


=1 for all zX and nN so 
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The invariance of pressure implies the 

invariance of these "entropy" in [MU01,MU02] hv 

(resp. hω) is denoted h-(resp. h-). 

The bounds on stable dimension given by 

Mihailes-Urbanski can then be stated as follows: 

Theorem 8 ([MU02]) Suppose f is a 

homeomorphic Axiom A map of P2 and A is a basic 

saddle set for f with no critical points of f. Let 

 Øs(x) = log║Df(v+)║ 

Where v+ is the "contracting" vector at xA. 

and denote by ts (resp. ts
-) the (unique) zero of the 

function t→P-
f(t, Øs) (resp. t→Pf-(t, Øs). Then for all 

xA. ts
- ≤ sd(A,x) ≤ ts. 

Other directions 

I would like to close with some brief speculative 

comments two other possible directions of study in the 

spirit of preimage entropy : 

Variantional Principle : The relation between 

measure-theoretic and topological entropy given by 

Theorem 1 has an extansion to topological pressure 

[Rue73,Wa176,Mis76]: 

Theorem 9 (Variantional Principle) For any 

continuous map f : X→X on a compact metric space 

and any ΦC(X).   


dfhP pf )()( sup . 

Where the supermum is taken over all f-invariant 

Borel probability measures μ. 

It is natural to ask whether there is an anglogue 

of this preimage entropy one needs to find an 

appropriate version of pressure and measure theoretic 

entropy probably based on the branch structure of 

preimages Mihailesau and Urbanski have some ideas 

results in this direction. 

Semigroup Actions: The dynamics of a single 

map f : X→X can be viewed as an action of the 

semigroup N on X. Andrzej Bis[Bis02] has formulated 

analogues of the various primage entropies in the 

context of an action of any finitely-generated 

semigroup of continuous maps on a compact metric 

space. One might speculate that a combination of these 
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ideas with those of Mihailesau and Urbanski might 

yield more general results on the dimension of fractals 

defined by iterated function systems.  
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 الانتروبي التبولوجيا وتركيب التطبيقات

 علاء عدنان عواد

 الخلاصة

ف مدده اددلا الهودإ اددت  ه دمهددم مظ مدده تمووادحة عددهلاه تتايددوت وده اادهاتهدده الههتلت لددح تالهدده اده ماددحههت لداالددت الظلدح    دهددح ماددحههت  ليددح الهد  
اص  لدد  ا د محعددلهم مدده الفيددحر المهددا  المهددااهفمدداا الهاملددم المهمدداا للاهيهلظددحة المعددهماا اهاددمق وددحر الهيهلظددحة  لددا  تلدده ا الظيددحلح الهيهلظلددت المه لاظدد

حا ال ائالدت تالامدتا ال لدحململت.ت ندلدح هدادا ااوههد ة ادمحق الهيهلظدح المف دلات دفعه. اله الفماا عدتف همدته متيدوه هعدوم ال دفتف ه ااعدت ال دفتف 
 ااح اله حالف المه لاظت هحلمتيتع ت له  ليح  ه همته الدهحئج هامق مهر تمللك الهاااله.


