Open Access

Spectrophotometric Determination of Benzocaine by Azo-Dye Formation Reaction

Dawood Habbo Mohammeda*

Lamya Adnan Sarsamb**

* Mosul University- Education College for women ** Mosul University- College of Science.

ARTICLE INFO

Received: 16 / 6 /2010 Accepted: 9 / 2 /2011 Available online: 14/6/2012 DOI: 10.37652/juaps.2011.15433

Keywords: Spectrophotometric , Benzocaine , Azo-Dye Formation Reaction.

ABSTRACT

A spectrophotometric method for the assay of trace amounts of benzocaine was based on the reaction of benzocaine with nitrite ion to form the corresponding diazonium salt followed by coupling reaction with ethyl cyano acetate to form a stable and a soluble yellow azo dye with maximum absorption at 405 nm. Beer's law was obeyed over the range 5-250 μ g/25ml, i.e, (0.2-10ppm) of benzocaine and correlation coefficient 0.998 with a molar absorptivity of 3.1 ×104 L.mol-1.cm-1, a relative error of 0.0 to 0.25 % and a relative standard deviation of ± 0.03 to ± 0.38 %, depending on the concentration level. The method has been successfully applied for the assay of benzocaine in one pharmaceutical preparation (Lozenges).

Introduction:

Benzocaine (4-aminobenzoic acid ethyl ester)(synonym: ethyl aminobenzoic acid, is a local anaesthetic of the ester type with a poor solubility in water which is used for superficial anesthesia, for the local and temporal rely of pain, among other disorders, to buccal effections (1). For such reasons, it is a drug extensively used in odontology(2-3). It is used in Cattle, sheep ,swine and horses for local and prolonged low epidural anaesthesia . Benzocaine acts on the central nervous system, cardiovascular system, neuromuscular junctions and ganglion synapse .Its mechanism of action is to prevent the generation and condition of the nerve impulse. It has been proposed that the drug penetrates cell membranes in its uncharged form and binds to putative intracellular receptors. Various spectrophotometric (4-10) and chromatographic(11-16) methods for determination of benzocaine have been reported. In the present work an

attempt was made to develop a rapid and sensitive method for the determination of benzocaine in pharmaceutical formulation.

4-amino benzoic ethyl ester

Experimental

Instruments

All spectrophotometric measurements were performed on Shimadzu UV-Visible Recording Spectrophotometer UV-160 using 1 cm silica cell, pH meter type Philips PW 9420 was used for pH measurements.

Reagents

All chemicals used in this investigation are of analytical – reagent grade, benzocaine standard material is provided from general establishment for medical appliance and drugs / NDI - Mosul / Iraq.

Solutions

Benzocaine (100 μ g/ml): 0.01g was dissolved in ethanol solution transferred into a 100 ml volumetric flask, and diluted to the mark with distilled water.

Ethyl cyano acetate, 2% (v/v), was prepared freshly daily by dissolving 2 ml of ethyl cyano acetate in 100 ml distilled water.

Sodium nitrite solution, 1% (w/v), was prepared by dissolving 1 g of sodium nitrite (BDH) in 100 ml distilled water.

Sulphamic acid solution, 3% (w/v), was prepared by dissolving 3 g of sulphamic acid (Fluka) in 100 ml distilled water.

Hydrochloric acid solution, 1N. was prepared by diluting 8.47ml of concentrated acid (11.8 N) to 100 ml with distilled water.

General procedure

To a series of 25-ml calibrated flasks, transfer 0.05 - 2.5 ml of benzocaine solution, then 1 ml of 1M hydrochloric acid and 0.3 ml of 1% (w/v) sodium nitrite solution were added and the mixture was allowed to stand for 2 minute and then 1.0 ml of 3% (w/v) sulphamic acid solution was added with occasional shaking for 3 minutes. After that a 1.0 ml of 2% (v/v) ethyl cyano acetate was added. Then the solutions was let to stand for 1 minute at room temperature before adding 2ml of 1M ammonium hydroxide then the volumes were completed to the mark with distilled water, The absorbance was read at 405 nm against the reagent blank. A linear calibration graph was obtained over the concentration range of 5 – 250 µg benzocaine / 25 ml (0.2-10 ppm) and a concentration above 250 μ g / 25 ml gave a negative deviation (Fig. 1). The molar absorptivity has been found to be 3.1×104 L. mol-1. cm-1.

Fig. 1. Calibration graph of benzocaine determination at 405nm.

Results and Discussion

Study of the optimum reaction conditions

Effect of acid

Different amounts and types of acids have been used in diazotization of benzocaine; the results showed that 1 ml of 1 M HCl has been selected for subsequent experiments (Table 1).

1M Acid	Ab	nsorban	ce/ml of	acid ad	ded
solution used	0	0.5	1.0	1.5	2
HCl	0.339	0.387	0.406	0.387	0.380
HNO ₃	0.339	0.128	0.109	0.084	0.070
H ₂ SO ₄	0.339	0.402	0.261	0.084	0.071
СН3СООН	0.339	0.380	0. 377	0.095	0.098

Table 1. Effect of acids on absorbance and colour contrast

Effect of sodium nitrite amount and time

The maximum absorbance reading was obtained by adding 0.3 ml of 1% sodium nitrite for 2 minutes of reaction time (Table2).

ml of 1%	Absorbance / minute					
NaNO ₂		S	tandi	ng tim	le	
solution	0	1	2	3	4	5
0.1	0.387	0.371	0.376	0.377	0.391	0.388
0.3	0.375	0.389	0.402	0.358	0.380	0.385
0.5	0.379	0.387	0.384	0.369	0.382	0.389

0.7	0.378	0.377	0.387	0.384	0.379	0.398
1.0	0.393	0.378	0.390	0.381	0.354	0.383

Effect of sulphamic acid amounts and time

The excess of nitrite can be removed by the addition of sulphamic acid solution. The effect of sulphamic acid amount and time has been studied. (Table3).

Table 3. Effect of sulphamic acid amounts and time on the absorbance of benzocaine

ml of 3% Sulphamic	able	Ab	sorba	nce/m ti	ninute me	stand	ling
acid solution	Vari	0	1	2	3	4	5
0.1	Sample = S	0.383	0.390	0.387	0.380	0.395	0.377
0.1	Blank = B	0.00	-0.010	-0.008	-0.006	-0.004	-0.018
	s	0.389	0.387	0.408	0.379	0.383	0.395
0.3	В	-0.003	-0.012	-0.001	0.009	0.000	-0.014
0.5	s	0.385	0.394	0.387	0.384	0.387	0.372
0.5	В	-0.007	-0.010	-0.008	0.000	0.008	-0.006
0.7	s	0.377	0.391	0.408	0.374	0.376	0.387
0.7	B	0.001	-0.007	-0.005	-0.003	0.000	-0.008
10	s	0.365	0.368	0.409	0.379	0.388	0.370
1.0	В	0.007	-0.014	-0.006	0.001	-0.006	-0.013

The results in the table 3 indicated that 1.0 ml of sulphamic acid solution (3%, w/v) with 2 minutes as

standing time for the reaction gave the most suitable effect on the intensity of the azo-dye.

Effect of ethyl cyano acetate amount on absorbance

The effect of ethyl cyano acetate amount on the absorbance of the dye has been studied. From the results, it can be observed that 1.0 ml of 2% ethyl cyano acetate with 1 minute of reaction time was the more suitable which gave the highest value of intensity for the azo-dye (Table 4).

Ml of ethyl cyano	Absorbance/min. standing time				
acetate solution (2%)	0	1	3		
0.5	0.368	0.393	0.376		
1.0	0.392	0.406	0.373		
3.0	0.375	0.385	0.362		
5.0	0.385	0.357	0.361		
6.0	0.366	0.361	0.377		

Table 4. Effect of coupling agent amount on absorbance

Effect of time

The coloured azo dye developed rapidly after addition of ethyl cyano acetate and the stability period (within the first hour of stability) was sufficient to perform several measurements and the results are given in table 5. It is shown from table (5) that the maximum absorbance was obtained during the first five minutss and declined gradually.

Table 5. The effect of time and benzocaine amount on

absorbance										
µg of		Abs	orb	anco	e / n tir	ninu ne	te s	tano	ling	
benzocain e present	0	S	10	15	20	25	35	45	55	60
5	0.051	0.060	0.061	0.057	0.060	0.059	0.058	0.058	0.065	0.060
25	0.211	0.213	0.221	0.206	0.219	0.212	0.211	0.210	0.216	0.208
50	0.397	0.406	0.405	0.406	0.404	0.406	0.406	0.406	0.406	0.396
100	0.792	0.790	0.790	0.792	0.793	0.792	0.792	0.793	0.792	0.784

a	able 6. The effect of amount and type of base						
	Base used	Absorbance / ml of based used					
	(111)	1	2	3			
	NaOH	0.349	0.354	0.356			
	pН	12.10	12.56	12.71			
	Na ₂ CO ₃	0.380	0.371	0.364			
	pН	9.57	10.02	10.17			
	NH ₄ OH	0.388	0.406	0.402			
	nH	8 92	9.47	9.74			

Та

Effect of amount and type of base

The preliminary experiments have shown that the azo- dye developed only completely in alkaline medium. Different amounts of bases (strong and weak) have been used (table 6).

The experimental data showed that ammonium hydroxide gave better sensitivity than sodium hydroxide and sodium carbonate. So that 2.0 ml of1M NH4OH is recommended for the subsequent experiments

Effect of order of additions

To obtain optimum results the order of additions of reagents should be followed as given under the general procedure, otherwise a loss in colour intensity was observed.

absorption spectra

The absorption spectra of the yellow azo dye formed by coupling of diazotised benzocaine with ethyl cyano acetate shows a maximum absorption at 405 nm. The reagent blank gives very weak absorption at this wavelength (Fig. 2).

Fig.2: Absorption spectra of 100µg benzocaine / 25ml were treated according to the recommended procedure and measured against (A) reagent blank, (B) distilled water and (C) reagent blank measured against distilled water.

Nature of the dye

The stoichiometry of the azo dye thus formed by reaction of diazotised benzocaine with ethyl cyano acetate was investigated by applying the continuous variations method (Job's method). The results indicated that the azo-dye was formed in the ratio of 1:1diazotised benzocaine to ethyl cyano acetate (Fig.3).

Interference

The effect of some foreign compounds which often accompanied pharmaceutical preparations were studied by adding three different amounts (50, 100 and 200µg) to 100µg benzocaine in a final volume 25ml (Table 7).

Fig.3: Job's plot for benzocaine - ethyl cyano acetate

Therefore the azo-dye may have the following suggested structure:

J. of university of anbar for pure science : Vol.5:NO.1 : 2011

Interferent	Recovery (%) of 100 µg benzocaine / µg of interferent added				
	50	100	200		
Acaccia	98.28	99.70	99.6		
Cetyl pyridenium chloride	99.60	99.26	95.7		
Glucose	96.40	98.30	99.76		
Lactose	98.52	97.05	100.1		
Lindocaine	97.30	97.54	100.0		
menthol	98.54	99.24	100.1		
Starch	97.50	98.51	98.76		

Table 7: Effect of foreign compounds for assay of benzocaine

The results in table7 indicated that the studied foreign compounds did not interfere in determination of benzocaine using the proposed method.

Accuracy and precision.

To check the accuracy and precision of the method, benzocaine was determined at four different concentrations. The relative error% and relative standard deviation% results indicated the high accuracy and precision of the proposed method (Table 8).

Table 8. Accuracy and precision of determination of	f
benzocaine using spectrophotometric method.	

Amount of benzocaine taken, µg	Relative error, %*	Relative standard deviation, %*
25	0.00	± 0.23
50	+0.25	± 0.38
100	0.00	± 0.06
200	0.00	± 0.03

* Average of five determinations

Analytical application

The proposed method was applied to assay benzocaine in two Synthetic Pharmaceutical Preparations lozenges of benzocaine and throat lozenges solutions (E.Y. Hassen 2005). On applying proposed procedure, good recovery was obtained for lozenges of benzocaine solution only as shown in table 9.

Table9. Analytical applications of the spectrophotometric method in determination of benzocaine in Lozenges

Pharmaceutic	µg benzocaine	Recovery*
al preparation	present/25ml	(%)

Lozenges of benzocaine	50	97.3
	100	98.0
	150	99.0

*Average for five determinations

The proposed method for the determination of benzocaine in pharmaceutical preparation was simple and sensitive. The azo-dye formed was fairly soluble in aqueous solution. The statistical analysis of the results indicated that the method has good accuracy and good precision.

References

- British Pharmacopoeia ,2000, Version 4.0 CD , The Stationery office Ltd , London , May.
- M.I.Arufe-Martinaz, J.L.Romero-Palanco and M.A.Vizcaya-Rojas, (1989),"Application of derivative spectrophotometry for the simultaneous determination of cocaine and other local anesthetics , II Cocaine and benzocaine mixture" Spainal J.Anal. Toxical , 13(6) , 349-353 ; Anal.Abst. (1990), 52, 11E9, p.734.
- 3. A.M.Casas-Hernandez, M.P.Aguilar-Caballos and A.Gomez-Hens, (2002),
- "Application of time-resolved luminescence to dry reagent chemical technology" Anal.Chem.Acta, 452(2), 169-175.
- L.R.Paschoal and W.A.Ferreira,(2000), "Simultaneous determination of benzocaine and cetylpiridinium chloride in tablets by firstderivative spectrophotometric method" IIFarmaco, 55(11), 687-693.
- N.S. Othman,(2001), "A continued investigation of spectrophotometric disometry" Ph.D. Thesis ,University of Mousal, Cellege of Sciences, p. 75-95.
- N.D.Dinesh, P.Nagaraja, and K.S.Rangappa, (2002), "Sensitive spectrophotometric method for the analysis of some anesthetic drug" Indian J.Phar.Scie., 64(5), 485-488.

- A.S.Amin and A.M.El-Didamony,(2003) , "Colorimetric determination of benzocaine , lignocaine and procaine hydrochlorides in pure form and in pharmaceutical formulation using pbenzoquinone" Anal.Scie., 19, 1457-1459.
- R.A.A.Zakaria, (2004)," Spectrophotometric determination of benzocaine and Salbutamol sulphate using diazotisation coupling methodapplication to some drugs preparation " M.Sc.,Thesis, University of Mousl, Cellege of Sciences, p. 5-34.
- 9.E.Y.Hassen" ,(2005),Development of Spectrophotometric Methods for the
- Determination of Benzocaine in Two Synthetic Pharmaceutical Preparations
- "M.Sc.Thesis, University of Mosul, College of Sciences.
- 10. D.H.Mohammed, H.H.Ahmed and H.A. Mohammed",(2009), pectrophotometric
- determination of Benzocaine by formation azo dye with acetyl acetone" J. Nat.Chem.,35,383-395.
- 11. P.Linares, M.C.Gutierrez, F.Lazaro, M.D.Luque De Castro and M.Valcarcel , (1991),"Determination of benzocaine ,dextromethorphan and cetylpyridinium ion by high-performance liquid chromatographic with UV detection " J.Chro. A , 558(1) , 147-153.
- Gigante, A.M.V.Barros, A.Teixeira and M.J.Marcelo-Curto, (1991), "Separation and

simultaneous high-performance liquid chromatographic determination of benzocaine and benzyl benzoate in pharmaceutical preparation" J.Chro.A , 549 , 217- 220.

- G.S.Sadana and A.B.Ghogare, (1991) , "Simultaneous determination of chloramphenical and benzocaine in topical formulation by highperformance liquid chromatographic" J.Chro. , 542 , 515-520.
- 14. T. A. Biemer, N. Asral and J. A. Albanese,(1992),
 "Simultaneous stability- indicating capillary gas chromatographic assay for benzocaine and the two principal benzyl esters of Balsam Peru formulated in a topical ointment", J. Chro. A., 623(2), 395-398.
- J.A.Bernardy, K.S.Coleman, G.R.Stehly and W.H.Gingerich,(1996), "Determination of benzocaine in rainbow trout plasma" J.AOAC International, 79(3), 623-627.
- J.Joseph-Chartes, M.Montaqut, M.H.Lanalisis, C.Boyer and J.P.Dubost, (2001), "Simultaneous determination of rutine and benzocaine in suppositories by reversed-phase HPLC" Anal.Lett. , 34, 2685-2692.

J. of university of anbar for pure science : Vol.5:NO.1 : 2011

التقدير الطيفي للبنزوكائين بوإسطة تفاعلات تكوين صبغة الآزو

داود حبومحمد لمياء عدنان سرسم

الخلاصة

تضمن البحث طريقة طيفية لتقدير كميات متناهية في الصغر من البنزوكائيين. وأعتمدت الطريقة على أزوتة البنزوكائيين وذلك بمفاعلته مع ايون النتريت بوجود حامض الهيدروكلوريك ثم اقتران ملح الدايازونيوم الناتج مع كاشف الاقتران اثيل سيانو اسيتيت لتكوين صبغة آزوية صفراء مستقره وذائبة في الماء، تم قياس شدة الامتصاص للصبغة الناتجة عند الطول الموجي 405 نانوميتر وكانت حدود قانون بير في مدى التركيز من 5 إلى 250 مايكروغرام من البنزوكائيين في حجم نهائي25 مل (0.2 – 10جزء /مليون)وبمعامل ارتباط 9.908 وبلغت قيمة الامتصاصية المولارية 3.1 × 10 × لتر. مول-1. سم-1، والخطأ النسبي تراوح بين 0.0 و 0.25 % والانحراف القياسي النسبي بين± 0.03 و± 0.38 % اعتمادا على مستوى تركيز البنزوكائيين. تم تطبيق الطريقة بنجاح لتقدير البنزوكائيين في احدى مستحضراته الصيدلانية المحضرة(Lozenges).