Study of ∂ -open function and Inductively ∂ -open function in bitopological spaces

Nadia Ali Nadhim

College of Education. - Anbar university.

ABSTRACT

for its.

ARTICLE INFO

Received: 22 / 4 /2009 Accepted: 2 / 12 /2009 Available online: 14/6/2012 DOI: 10.37652/juaps.2010.15440 Keywords: ∂ -open function , Inductively , bitopological spaces.

1- Introduction

A bitopological space (X, p_1, p_2) [J.C. Kelly " bitopological space ",1963] is anon- empty set X with two topological P₁and P₂ on X and then definition of open set which is said to be ∂ -open set ,also define ∂ -open function ,and study some of properties for its , also introduce inductively ∂ -open function and we study the relation between ∂ -open function and inductively ∂ -open function in bitopological space and then we write some of theorems for them.

2- Basic definitions and theorems

Definition 2-1 :.

Let (X, p_1, p_2) be bitopological space then as be the assumed A

of X is said to be ∂ -open set iff ,there exists p_i -

open set U , such that $U \subseteq A$, and $\bigcap Cl_{p_i}(U) \subseteq A$, I =1.2

Example 2-2 :.

Let X = { a, b, c, d }, $p_1 = \{\Phi, X, \{a\}, \{b\}, \{a,b\}\}$,

 $p_2 = \{ \Phi, X, \{c\}, \{a, c\} \}$

then ∂ -open sets = { Φ ,X, {a, b, d}, {b, c, d}, {a, c, d}}.

Remark 2-3 :.

The intersection of tow ∂ -open sets is not necessarily ∂ -open while the union is ∂ -open set.

Proof :

Let $\{A_{\lambda} : \lambda \in \land\}$ be any arbitrary collection of ∂ -open sets, then there exists P_i -open set U_{λ} such that $U_{\lambda} \subseteq A_{\lambda}$ and $\bigcap Cl_{P_i}(U_{\lambda}) \subseteq A_{\lambda}$, I=1,2, for each $\lambda \in \land$.

Since :

$$\bigcup_{\lambda \in \wedge} \left(\bigcap_{i=1,2} Cl_{P_i}(U_{\lambda}) \right) = Cl_{P_i} \left(\bigcup(U_{\lambda}) \right) \cap Cl_{P_2} \left(\bigcup(U_{\lambda}) \right) \right)$$
$$= \bigcap_{i=1,2} Cl_{P_i} \left(\bigcup_{\lambda \in \wedge} (U_{\lambda}) \right) \subseteq \bigcup_{\lambda \in \wedge} A_{\lambda}$$

<u>Remark 2-4 :</u>

- 1- The set of all ∂ -open sets is not atopological space.
- 2- If A is P_i -closed set for I =1,2 , then A is ∂ open set .
- 3- If A is P_i -open set for I = 1,2, then A is not necessarly ∂ -open sets .

A new definition of bitopological space is introduce in this paper with its ∂ -

open set ∂ -open function, and inductively ∂ -open function and on some theorems

Examples 2-5 :

Let X = { a, b, c, d }, $p_1 = \{\Phi, X, \{a\}, \{b, c\}\}, p_2 = \{$ $\Phi, X, \{a\}, \{c,d\}\}.$ the ∂ -open sets = { Φ , X, {a}, {a, b}, {a, c}, {a, d}, {a, c}, {a b, c, {a, b, d} {b, c, d} . since $\{a, b, d\} \cap \{c, b, d\} = \{b, d\}$ which is not ∂ -open set .then the set of all ∂ -open Also {b, c} is open in P₁, but not ∂ -open. $\{c, d\}$ is open in P₂, but not ∂ -open. **Definition 2-6**: A function f: $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ is said to be ∂ -open function iff f(U) is ∂ -open in Y whenever Uis ∂ -open set in X. **Definition 2-7:** Let f: : $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ be function we say that f is inductively ∂ -open function iff there exists a subset $X^* \subseteq X$ such that $f(X^*) = f(X)$ and the function $f|_X^*:(X^*, P_1, P_2) \rightarrow (f(X), W_1, W_2)$ is $\hat{\partial}$ -open function. **Remark 2-8 :**

- 1- every onto closed function is ∂ -open function .
- 2- every onto ∂ -open function is inductively ∂ -open function .

Theorem 2-9:

If $f:(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ is one to one function and on some $X_1 \subseteq X$ with $f(X_1) = f(X)$, f is inductively ∂ -open function on X, then f is inductively ∂ -open function on X_1 .

Proof :-

 $= f(U^* \cap A)$

Since f: $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ be inductively ∂ -open one to one function then , there exists $X^* \subseteq$ X , such that $f(X^*) = f(X)$ and $f|_X^*: (X^*, P_1, P_2) \rightarrow$ $(f(X), W_1, W_2)$ is ∂ -open now , to prove $f:(X_1, P_1, P_2)$ \rightarrow (f(X), W₁, W₂) is inductively ∂ -open function. let $X_2 \subseteq X$ such that $X_2 = X^* \subseteq X_1$. we need to show that $f(X_2)=f(X_1)$ and $f|_{X_2}$: (X_2, P_1, P_2) \rightarrow (f(X), W₁, W₂) is ∂ -open function. now, $f(X_2) = f(X^* \cap X_1) = f(X^*) \cap f(X_1)$ $= f(X) \cap f(X)$ = f(X) $=f(X_1)$ Let U be $\hat{\partial}$ -open set in (X_2, P_1, P_2) , to show f(U) is ∂ -open in (f(X), W₁, W₂). Since U is ∂ -open in X₂, then there exists U^{*} closed in X^{*}, such that $U = U^* \cap X_2$ $f(U) = f(U^* \cap X_2)$ $= f(U^*) \cap f(X_2) = f(U^*) \cap f(X) = f(U^*).$ Since U^* is closed in X^* , then U^* is ∂ -open in X^* and $f|_X^*: (X^*, P_1, P_2) \rightarrow (f(X), W_1, W_2)$ is ∂ -open hence $f(U^*)$ is ∂ -open in f(X). **Definition 2-10:** Let f: $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ be a function in bitopological space. And $A \subset X$ a subset A is said to be an inverse set iff A $= f^{-1}(f(A))$. **Theorem 2-11**: If f: (X, P₁, P₂) is inductively ∂ -open function in bitopological space, and A inverse subset of X, then $f|_A: (A, P_1, P_2) \rightarrow (Y, W_1, W_2)$ is also inductively ∂ open function **Proof**: Since f: $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ be inductively ∂ -open function , so there exists as ubset $X^* \subseteq X$, such that $f(X^*) = f(X)$ and $f|_X^* : (X^*)$, $P_1, P_2 \rightarrow (f(X), W_1, W_2)$ is ∂ -open function . Now to prove that $f|_A: (A, P_1, P_2) \rightarrow (Y, W_1, W_2)$ inductively ∂ -open function. Let $A_1 \subset A$, such that $A_1 = A \cap X^*$ and we need to show $f(A_1) = f(A)$ and $f|_{A1}: (A_1, P_1, P_2) \rightarrow (f(A), W_1, W_2)$ is ∂ -open function. $f(A_1) = f(A \cap X^*)$ $f(A_1) = f(f^{-1}(f(A)) \cap X^*)$ $= f(A) \cap f(X^*)$ $= f(A) \cap f(X)$ = f(A)Now , let U be $\hat{\partial}$ -open in A₁ , so there exists closed set U^* in X^* , such that $U = U^* \cap A_1$.

Hence $f(U) = f(U^* \cap A_1)$

 $= f(U^* \cap A \cap X^*)$

 $= f(U^* \cap X^* \cap A)$

 $= f(U^* \cap f^{-1}(f(A)))$ $= f(U^*) \cap f(A)$ Since U^* is closed in X^* , then U^* is ∂ -open in X^* , and $f|_{X^*}$: $(X^*, P_1, P_2) \rightarrow (f(X), W_1, W_2)$ is ∂ -open function. hence $f(U^*)$ is ∂ -open in $f(X^*) = f(X)$. there fore $f(U^*) \cap f(A)$ ∂ -open in f(A). thus $f|_{A_1}$: (A₁, P₁, P₂) \rightarrow (f(A), W₁, W₂) is ∂ -open function. so $f|_A: (A, P_1, P_2) \rightarrow (Y, W_1, W_2)$ inductively ∂ -open restriction of a function. **Proposition 2-12**: If f: : (X, P₁, P₂) \rightarrow (Y, W₁, W₂) is ∂ -open function, let $T \subset Y$, then $f_T: (f^{-1}(T), P_1, P_2) \rightarrow (T, W_1, W_2) \ \partial$ -open function . proof Let V be ∂ -open set in f⁻¹(T). So ,there exists closed set V^* in X ,such that $V = V^* \cap$ $f^{-1}(T)$. $f_T(V) = f(V) = f(V^* \cap f^{-1}(T)) = f(V^*) \cap T$. since V^* is closed in X, then V^* is ∂ -open and f:(X, $P_1, P_2 \rightarrow (Y, W_1, W_2)$ is ∂ -open, then $f(V^*) \partial$ open in Y. so $f(V^*) \cap T$ is ∂ -open in T. hence $f_T: (f^{-1}(T), P_1, P_2) \rightarrow (T, W_1, W_2)$ is $\hat{\partial}$ -open function. **Theorem 2-13**: If f: $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ is onto inductively ∂ -open function, let $\Phi \neq T \subseteq Y$, then $f_T : (f^{-1}(T), P_1)$ P_2) \rightarrow (T, W_1 , W_2) be also inductively ∂ -open function. proof: since f: $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ onto inductively ∂ -open function, then there exists a subset X₁ \subset X , such that $f(X_1) = Y$ and $f|_{X_1}$: $(X_1, P_1, P_2) \rightarrow (Y, W_1, P_2)$ W_2) is ∂ -open. now to prove $f_T: (f^{-1}(T), P_1, P_2) \rightarrow (T, W_1, W_2)$ is inductively ∂ -open function ,where $\Phi \neq T \subseteq Y$. let X_1^* be a subset of $f^{-1}(T)$, such that $X_1^* = X_1 \cap f^{-1}$ $^{1}(T)$ we need to show that $f_{T}(X_{1}^{*}) = T \text{ and } f_{T}|_{X_{1}^{*}} : (X_{1}^{*}, P_{1}, P_{2}) \to (T, W_{1}, W_{2})$ is ∂ -open function . now, let U ∂ -open set in X_1^* . hence , there exists U^* closed set in X_1 , such that U = $U^* \cap X_1^*$ $f(U) = f(U^* \cap X_1^*)$ $f(U) = f(U^* \cap X_1 \cap f^{-1}(T)) = f(U^* \cap f^{-1}(T)) = f(U^*)$ $\cap T$ since U^{*} closed in X^{*}, then U^{*} is ∂ -open in X^{*}, and

P- ISSN 1991-8941 E-ISSN 2706-6703 2010,(4), (1):84-87

 $f|_X^*: (X^*, P_1, P_2) \rightarrow (Y, W_1, W_2)$ is $\hat{\partial}$ -open ,so $f(U^*)$ is ∂ -open in Y. there fore $f(U^*) \cap T$ is ∂ -open in T. so $f|_{X_1}^*$: $(X_1^*, P_1, P_2) \rightarrow (Y, W_1, W_2)$ is ∂ -open function. there fore $f_T : (f^{-1}(T), P_1, P_2) \rightarrow (T, W_1, W_2)$ inductively ∂ -open function . **Proposition 2-14** : If f: $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ is onto function, Y $= T_1 \bigcup T_2$ open cover of Y. $f_{T_1}: (f^{-1}(T_1), P_1, P_2) \rightarrow (T_1, W_1, W_2) \text{ and } f_{T_2}: (f^{-1}(T_2), W_2) \text{ and } f_{T_2}: (f^{ P_1, P_2 \rightarrow (T_2, W_1, W_2)$ are ∂ -open, then f: (X, P_1 , P_2) \rightarrow (Y, W_1 , W_2) is $\hat{\partial}$ -open function. proof: to prove f: (X, P₁, P₂) \rightarrow (Y, W₁, W₂) is $\hat{\partial}$ -open .let U be ∂ -open set in X, to show f(U) is ∂ -open in Y. $U = U \cap X$ $= U \cap f^{-1}(Y) = U \cap f^{-1}(T_1 \bigcup T_2)$ $= U \cap (f^{-1}(T_1) \bigcup f^{-1}(T_2))$ $= (U \cap (f^{-1}(T_1)) \bigcup (U \cap (f^{-1}(T_2)))$ Since U is is ∂ -open in X, so U \cap f⁻¹(T₁) is ∂ -open in $f^{-1}(T_1)$. Also U \cap f⁻¹(T₂) is ∂ -open in f⁻¹(T₂). Now, $f(U) = f[U \cap f^{-1}(T_1) \bigcup (U \cap f^{-1}(T_2))]$ $= f(U \cap f^{-1}(T_1)) \bigcup f(U \cap f^{-1}(T_2))$ Since f(U \cap f⁻¹(T₁)) is ∂ -open in T₁ and f(U \cap f⁻¹(T₂)) is ∂ -open in T_2 , So f($U\cap f^{\text{-1}}(T_1))\,\bigcup\,f(\,U\cap f^{\text{-1}}(T_2\,))$ is ∂ -open in Y . Theorem 2-15: If $f: (X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ is onto function, let $Y = T_1 \bigcup T_2$ be open cover of Y .let $f_{T_1} : (f^{-1}(T_1), P_1,$ P_2) \rightarrow (T_1 , W_1 , W_2) and f_{T_2} :($f^{-1}(T_2)$, P_1 , P_2) \rightarrow (T_2 , W_1, W_2) are inductively ∂ -open function, then f: (X, $P_1, P_2 \rightarrow (Y, W_1, W_2)$ is also inductively ∂ -open in function. **Proof**: Since f_{T_1} : $(f^{-1}(T_1), P_1, P_2) \rightarrow (T_1, W_1, W_2)$ inductively is ∂ -open in function , then there exists a subset $X_1 \subseteq f^{-1}(T_1)$ such that $f_T(X_1) = f_T(f^{-1}(T_1)) =$ T_1 and $f_{T_1}|_{X_1}$: $(X_1, P_1, P_2) \rightarrow (T_1, W_1, W_2)$ is ∂ -open function. similarly f_{T_2} : $(f^{-1}(T_2), P_1, P_2) \rightarrow (T_2, W_1, W_2)$ inductively ∂ -open function , then there exists $X_2 \subseteq f^ ^{1}(T_{2})$ such that :. $f_{T_2}(X_2) = f_{T_2}(f^{-1}(T_2)) = T_2 \text{ and } f_{T_2}|_{X_2}: (X_2, P_1, P_2)$ \rightarrow (T₂, W₁, W₂) is ∂ -open function.

now, to prove f: $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ is inductively ∂ -open function. let $X_3 \subseteq X$, such that $X_3 = X_1 \bigcup X_2$. we need to show that $f(X_3) = Y$ and $f|_{X_3}$: (X_3, P_1, P_2) \rightarrow (Y, W₁, W₂) is $\hat{\partial}$ -open function. $f(X_3) = f(X_1 \bigcup X_2)$ $= f(X_1) \bigcup f(X_2)$ $f(X_3) = T_1 \bigcup T_2 = Y$ Now, let U_3 be ∂ -open set in X_3 . Hence $U_3 \cap X_1$ is ∂ -open in X_1 , and $U_3 \cap X_2$ is ∂ open in X_2 . $f(U_3) = f(U_3 \cap X_3)$ $= f(U_3 \cap (X_1 \bigcup X_2)) = f((U_3 \cap X_1) \bigcup (U_3 \cap X_1))$ $(X_2)) = f(U_3 \cap X_1) \bigcup f(U_3 \cap X_2)$ Since f (U₃ \cap X₁) is ∂ -open in T₁, and f (U₃ \cap X₂) is ∂ -open in T₂. f (U₃ \cap X₁) \bigcup f(U₃ \cap X₂) is ∂ -open in Y. hence $f|_{X_3}$: $(X_3, P_1, P_2) \rightarrow (Y, W_1, W_2)$ is ∂ -open function . there fore f: $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ is inductively ∂ -open function . Theorem 2-16: Let f: (X, P_1, P_2) be a function in bitopological space, $X = U_1 \bigcup U_2$ with $f(U_1)$ and $f(U_2)$ are closed in f(X), if $f|_{U_1}$: $(U_1, P_1, P_2) \rightarrow (Y, W_1, W_2)$ and $f|_{U2}: (U_2, P_1, P_2) \rightarrow (Y, W_1, W_2)$ are inductively ∂ open function, then f: (X, P₁, P₂) \rightarrow (Y, W₁, W₂) inductively ∂ -open function. proof: $f|_{U1}: (U_1, P_1, P_2) \rightarrow (Y, W_1, W_2)$ inductively $\hat{\partial}$ -open function. then there exists $X_1 \subseteq U_1 \ni f(X_1) = f(U_1)$ and $f|_{X_1}$: (X₁) $(P_1, P_2) \rightarrow (f(U_1), W_1, W_2)$ is ∂ -open function. also $f|_{U2}$: $(U_2, P_1, P_2) \rightarrow (Y, W_1, W_2)$ inductively $\hat{\partial}$ open function. then ,there exists a subset $X_2 \subseteq U_2$,such that $f(X_2) =$ $f(U_2)$ and $f|_{X_2}$: $(X_2, P_1, P_2) \rightarrow (f(U_2), W_1, W_2)$ is ∂ -open function . now, to show f: $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ inductively ∂ -open function . let $X^* = X_1 \bigcup X_2 \subseteq X$ $f(X^*) = f(X_1 \bigcup X_2) = f(X_1) \bigcup f(X_2) = f(U_1) \bigcup f(U_2) =$ $f(U_1 \bigcup U_2)$ = f(X)So $f(X^*) = f(X)$, and to show $f|_X^*: (X^*, P_1, P_2) \rightarrow$ $(f(X), W_1, W_2)$ is ∂ -open function. Let T ∂ -open in X^{*} $T = T \cap X^* = T \cap (X_1 \bigcup X_2) = (T \cap X_1) \bigcup (T \cap X_2)$ $f(T) = f[(T \cap X_1) \bigcup (T \cap X_2)]$ $= f(T \cap X_1) \bigcup f(T \cap X_2)$

Since T ∂ -open in X^{*}, so T \cap X₁ is ∂ -open in X₁ and $f|_{X_1}$: (X₁, P₁, P₂) \rightarrow (f(U₁), W₁, W₂) is ∂ -open function.

then $f(T \cap X_1) \partial$ -open in $f(U_1)$ and $f(U_1)$ is closed in f(X) then $f(U_1)$ is ∂ -open in

f (X), hence f (T \cap X₁) ∂ -open in f(X).

similarly f (T \cap X₂) is ∂ -open in f(X)

$$\begin{split} f(T) &= f\left(T \cap X_1\right) \bigcup f\left(T \cap X_2\right) \text{ is } \partial \text{ -open in } f(X) \left.f\right|_X^*:\\ (X^* \,,\, P_1,\, P_2) \to (f(X),\, W_1,\, W_2) \text{ is } \partial \text{ -open function }.\\ \text{there fore } f\colon (X\,,\, P_1,\, P_2) \to (\,Y\,,\, W_1,\, W_2) \text{ inductively}\\ \partial \text{ -open function }. \end{split}$$

Theorem 2-17:

If f: (X, P₁, P₂) \rightarrow (Y, W₁, W₂) is a function in bitopological space, X = $\bigcup_{\alpha \in \wedge} U_{\alpha}$ with f(U_{α}) ∂ -open

in f(X), for each $\alpha \in \Lambda$, f|_{U α}: (U_{α}, P₁, P₂) \rightarrow (Y, W₁, W₂) inductively $\hat{\partial}$ -open function, then f: (X, P₁, P₂) \rightarrow (Y, W₁, W₂) also inductively $\hat{\partial}$ -open function. **Proof :**

 $f|_{U\alpha}\!\!:(U_\alpha$, $P_1,P_2)\to (Y,W_1,W_2)$ inductively ∂ -open function .

then , there exists $X_{\alpha}\!\subseteq U_{\alpha}\,$, such that $f(X_{\alpha})=f(U_{\alpha}\,\,)$ and

let $X^* = \bigcup_{\alpha \in \wedge} X_{\alpha}$ be a subset of X.

now ,to show f: $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ inductively ∂ -open function .

we need to show $f(X^*) = f(X)$ and $f|_X^*: (X^*, P_1, P_2) \rightarrow$ $(f(X), W_1, W_2) \partial$ -open. $f(X^*) = f(\bigcup_{\alpha \in \land} X_\alpha) = \bigcup_{\alpha \in \land} f(X_\alpha) = \bigcup_{\alpha \in \land} f(U_\alpha \) = f(\bigcup_{\alpha \in \land} U_\alpha \)$ = f(X)Now , let T ∂ -open in X^{*}. $T = T \, \cap \, X^* = T \, \cap (\bigcup_{\alpha \in \land} X_\alpha) = \bigcup_{\alpha \in \land} (T \, \cap \, X_\alpha)$ $f(T)=f (\bigcup (T \cap X_{\alpha}))$ since $T \cap X^* \partial$ -open in X_{α} and $f|_{X_{\alpha}}$: $(X_{\alpha}, P_1, P_2) \rightarrow$ $(f(U_{\alpha}), W_1, W_2) \ \partial$ -open. then $f(T \cap X^*) \partial$ -open in $f(U_{\alpha})$ and since $f(U_{\alpha}) \partial$ open in f(X), for each $\alpha \in \Lambda$. then $f(T) = \bigcup f(T \cap X_{\alpha}) \partial$ -open in f(X). so $f|_X^*: (X^*, P_1, P_2) \rightarrow (f(X), W_1, W_2)$ is ∂ -open. there fore f: $(X, P_1, P_2) \rightarrow (Y, W_1, W_2)$ inductively ∂ -open function . **References:** .

- 1- J. N. Sharma ," Topology" Meerut college , Meerut . 1977.
- 2- J. C. Kelly, "Bitopological spaces ", proc. London Math. Soc. 13 (1963), 71-89.
- 3- Yiezi .K. M. and sukaina . A.L; "Study of some topological concepts in bitopological spaces ". department of mathematics, college of education , Babylon university, 2007.

دراسة الدالة المفتوحة 6 في الفضاء ثنائي التوبولوجي

نادية علي ناظم

الخلاصة :

(X, P1, P2) يقدم هذا البحث تعريف جديد للمجموعة المفتوحة في الفضاء ثنائي التبولوجي في هذا الفضاء عرفنا المجموعة المفتوحة − ∂
والدوال المفتوحة − 6 وكذالك الدوال المفتوحة − 6 استقرائيا والمبرهنات المتعلقة بهذه المواضيع ودراسة بعض الخواص المرتبطة فيه