
P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :94-105

 94

 ADAPTIVE LEARNING RATE VERSUS RESILIENT

ACKPROPAGATION FOR NUMERAL RECOGNITION

Muntaser Abdul-Wahed Salman

University of Alanbar- College of Computer

A R T I C L E I N F O A B S T R A C T

Received: 1 / 4 /2008

Accepted: 24 / 4 /2008

Available online: 30/4/2008

DOI: 10.37652/juaps.2008.15445

 Two types of neural networks learning algorithms were created, trained, tested,

and evaluated in an effort to find the appropriate neural network training method for

use in numeral recognition problem. The purpose of this study was to compare the

training speeds of two neural networks Backpropagation learning algorithms

(Adaptive learning rate and Resilient) when exposed to ten number recognition data

sets. Each algorithm was trained using ten data sets as a basic set (Boolean value),

and a complex (noisy) set. The trials conducted indicated a significant difference

between the two algorithms in the basic data set, with the Resilient training algorithm

the neural network trained faster.The creation, training, and testing of each neural

network was done using the MathWorks software package MATLAB which contains

a “Neural Network Toolbox” that facilitates rapid creation, training, and testing of

neural networks. MATLAB was chosen to use for learning algorithm development

because this toolbox would save an enormous amount programming effort.

Keywords:

ADAPTIVE ,

LEARNING RATE ,

BACKPROPAGATION ,

NUMERAL RECOGNITION.

Introduction

It is often useful to have a machine perform

pattern recognition. In particular, machines that can read

symbols are very cost effective. A machine that reads

banking checks can process many more checks than a

human being in the same time. This kind of application

saves time and money, and eliminates the requirement

that a human perform such a repetitive task. Pattern

recognition in neural networks is a very broad field, but

a common use for neural networks is handwriting or

numeral recognition. This pattern matching technique

enables computers to identify and utilize human

handwriting for numbers as well as characters [1, 3, 4].

* Corresponding author at: University of Alanbar- College of
Computer, Iraq.E-mail address: muntaserabd1@yahoo.com

Recognition of handwritten numerals is important

because of its applicability to a number of problems, like

postal code recognition and information extraction from

fields of different forms. In the Indian context, there

exists a need for development and/or evaluation of the

existing techniques for recognition of numerals written

in Indian scripts. Generic techniques cannot, in general,

tackle problems associated with script specific

peculiarities. In this paper, we present a neural network–

based architecture for recognition of handwritten

numerals. Although the architecture is generic, it has

been found to be useful for recognition of handwritten

numerals.

mailto:muntaserabd1@yahoo.com

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :94-105

 95

An artificial neural network (ANN or NN for

short) is an artificial intelligence closely modeled after a

human brain. Such a neural network is composed of

computer-programming objects called nodes [6]. These

nodes closely correspond in both form and function to

their organic counterparts, neurons. Individually, nodes

are programmed to perform a simple mathematical

function, or to process a small portion of data. A node

has other components, called weights, which are an

integral part of the neural network. Weights are variables

applied to the data that each node outputs. By adjusting

a weight on a node, the data output is changed, and the

behavior of the neural network can be altered and

controlled. By careful adjustment of weights, the

network can learn. Networks learn their initial behavior

by being exposed to training data. The network

processes the data, and a controlling algorithm adjusts

each weight to arrive at the correct or final answer(s) to

the data. These algorithms or procedures are called

learning algorithms.

Neural networks are often used for pattern

recognition and classification. Their adaptability and

learning capabilities make them excellent choices for

tasks requiring comparison of data sets or extracting

subtle patterns from complex data [7, 11]. The field of

neural networks has a history of some five decades but

has found solid application only in the past fifteen years

[1, 6], and the field is still developing rapidly. Thus, it is

distinctly different from the fields of control systems or

optimization where the terminology, basic mathematics,

and design procedures have been firmly established and

applied for many years [6, 4]. This project was focused

on numeral recognition in its most basic form, individual

number recognition. The rationale for this project was to

improve efficiency neural network numeral recognition.

The study conducted a series of tests to determine which

of two learning algorithms, Adaptive learning rate

Backpropagation [2] or Resilient Backpropagation [10],

trained a neural network faster. Ten sets of number

where used to compare the algorithms, a basic Boolean

value set, and noisy (which may be a handwritten)

number set.

Learning Algorithms

Backpropagation was created by generalizing the

Widrow-Hoff learning rule to multiple-layer networks

and nonlinear differentiable transfer functions[6]. Input

vectors and the corresponding target vectors are used to

train a network until it can approximate a function,

associate input vectors with specific output vectors, or

classify input vectors in an appropriate way as defined

by you. Standard backpropagation is a gradient descent

algorithm[1] in which the network weights are moved

along the negative of the gradient of the performance

function as shown in the following equation.

)()()1(tWEtWtW
- - - (1)

Where is the constant learning rate, and)(tWE is

the derivative (slope) of the error E at time t (in epochs).

There are many variations on the

Backpropagation, gradient descent model. Two of these

are the Adaptive learning rate Backpropagation

algorithm [2], referred to as gda, and the Resilient

Backpropagation [10], known as Rprop.

Adaptive learning rate Backpropagation algorithm:-

With standard steepest descent, the learning rate is

held constant throughout training. The performance of

the algorithm is very sensitive to the proper setting of

the learning rate [9]. If the learning rate is set too high,

the algorithm may oscillate and become unstable. If the

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :94-105

 96

learning rate is too small, the algorithm will take too

long to converge. It is not practical to determine the

optimal setting for the learning rate before training, and,

in fact, the optimal learning rate changes during the

training process, as the algorithm moves across the

performance surface.

The performance of the steepest descent algorithm

can be improved if we allow the learning rate to change

during the training process [9]. An adaptive learning rate

will attempt to keep the learning step size as large as

possible while keeping learning stable. The learning rate

is made responsive to the complexity of the local error

surface. An adaptive learning rate requires some changes

in the training procedure used by traingda (function used

in Matlab) [5].

First, the initial network output and error are

calculated. At each epoch new weights and biases are

calculated using the current learning rate. New outputs

and errors are then calculated. If the new error exceeds

the old error by more than a predefined ratio

max_perf_inc, the new weights and biases are discarded.

In addition, the learning rate is decreased (typically by

multiplying by lr_dec). Otherwise, the new weights, etc.,

are kept. If the new error is less than the old error, the

learning rate is increased (typically by multiplying by

lr_inc). This can be shown in the following equation:

)1()()(

)1()(_)(

)1()(_)(

)1(

tEtEift

tEtEifinclrt

tEtEifdeclrt

t

-- (2)

Resilient Backpropagation (Rprop) training

algorithm:-

The purpose of the resilient backpropagation

(Rprop) training algorithm is to eliminate these harmful

effects of the magnitudes of the partial

derivatives[8,9,10]. Only the sign of the derivative is

used to determine the direction of the weight update; the

magnitude of the derivative has no effect on the weight

update. The size of the weight change is determined by a

separate update value. The update value for each weight

and bias is increased by a factor delt_inc whenever the

derivative of the performance function with respect to

that weight has the same sign for two successive

iterations. The update value is decreased by a factor

delt_dec whenever the derivative with respect that

weight changes sign from the previous iteration. If the

derivative is zero, then the update value remains the

same. Whenever the weights are oscillating the weight

change will be reduced. If the weight continues to

change in the same direction for several iterations, then

the magnitude of the weight change will be increased. A

complete description of the Rprop algorithm is given in

[10]. This can be shown in the following equation:

else

tWtEif

tWtEif

tW

0

0)(/)(

0)(/)(

)1(

---(3)

 is the weight step, calculated by multiplying the

derivative of the current slope and the previous slope as

described above.

3. Numeral Recognition Procedure

A network is to be designed and trained to

recognize the 10 numbers (from 0 to 9). An imaging

system that digitizes each number centered in the

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :94-105

 97

system’s field of vision is available. The result is that

each number is represented as a 5 by 7 grid of Boolean

values. White has an input value of 0, black a value of 1.

Each number is a 5x7 matrix. As shown in fig.(1)

However, the imaging system is not perfect and the

numbers may suffer from noise. Perfect classification of

ideal input vectors is required and reasonably accurate

classification of noisy vectors.

The ten 35-element input vectors are defined in

the function file recog as a matrix of input vectors called

number. The target vectors are also defined in this file

with variable called targets. Each target vector is a 10-

element vector with a 1 in the position of the number it

represents, and 0’s everywhere else. For example, the

number 0 is to be represented by a 1 in the first element

(as 0 is the first number of the numbers), and 0’s in

elements two through ten.

Initialization

In our problem the neural network needs 35 inputs

and 10 neurons in its output layer to identify the

numbers. The network is a two-layer log-sigmoid/log-

sigmoid network. The log-sigmoid transfer function was

picked because its output range (0 to 1) is perfect for

learning to output Boolean values. The hidden (first)

layer has 10 neurons. This number was picked by

guesswork and experience. If the network has trouble

learning, then neurons can be added to this layer.

The network receives the 35 Boolean values as a

35-element input vector. It is then required to identify

the number by responding with a 10-element output

vector. The 10 elements of the output vector each

represent a number. To operate correctly, the network

should respond with a 1 in the position of the number

being presented to the network. All other values in the

output vector should be 0. In addition, the network

should be able to handle noise. In practice, the network

does not receive a perfect Boolean vector as input.

Specifically, the network should make as few mistakes

as possible when classifying vectors with noise of mean

0 and standard deviation of 0.2 or less. The two-layer

network is created with newff and shown in Fig. (2).

S1 = 10;

[R,Q] = size(number);

[S2,Q] = size(targets);

P = number;

net=newff(minmax(P),[S1 S2],{'logsig'

'logsig'},'traingda');

Training

To create a network that can handle noisy input

vectors it is best to train the network on both ideal and

noisy vectors. To do this, the following conditions

should be considered:-

The network is first trained on ideal vectors until

it has a low sum-squared error.

Then, the network is trained on 10 sets of ideal

and noisy vectors. The network is trained on two copies

of the noise-free number at the same time as it is trained

on noisy vectors. The two copies of the noise-free

number are used to maintain the network’s ability to

classify ideal input vectors.

Unfortunately, after the training described above

the network may have learned to classify some difficult

noisy vectors at the expense of properly classifying a

noise-free vector. Therefore, the network is again trained

on just ideal vectors.This ensures that the network

responds perfectly when presented with an ideal number.

Training is done using two neural networks

Backpropagation learning algorithms, adaptive learning

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :94-105

 98

rate with the function traingda and Resilient

Backpropagation with the function trainrp respectively.

A study was conducted to compare the

convergence or learning speed of two different weight

adjustment algorithms (gda and Rprop) in feed-forward

neural networks. Ten different training data sets where

created, one basic set made up of binary number

bitmaps, and a second complex set made up of human

handwriting grayscale bitmaps. The basic set was used

to train a network using gda, and a network using Rprop.

This was repeated 10 times for each algorithm, to

eliminate the possible confounding variable of random

weight setting. The results from these 20 trials were

compared to each other. The complex set was also used

to train a gda network, as well as a Rprop network.

Again, to eliminate harmful initial weight settings, each

simulation was run 10 times. The complex training set

results were compared to each other. In total, 40 trials

were run (10 for each training set and algorithm

combination).

The first training set was made up of ten 5x7 pixel

standard Binary number bitmaps (see fig.1). The second

training was made up of four set of 5x7pixel bitmaps,

two of standard binary bitmaps as well as two of noisy

sets (see fig.3 a & b). The networks were simulated

using Matlab.

The basic networks (5x7 number set) had 35 input

nodes (each corresponding to a bit in the 5x7 matrix), 10

nodes in the one hidden layer, and ten output nodes

(parallel to the number of patterns in the set). The exact

parameters of both algorithms used are considered to be

standard as shown in Table 1.

There are six training parameters associated with

traingda and trainrp algorithms: (epochs, show, goal,

time, min_grad and max_fail)

The training status is displayed for every show

iterations of the algorithm. (If show is set to NaN, then

the training status is never displayed.) The other

parameters determine when the training stops. The

training stops if the number of iterations exceeds epochs,

if the performance function drops below goal, if the

magnitude of the gradient is less than min_grad, or if the

training time is longer than time seconds. max_fail, is

associated with the early stopping technique.

In traingda algorithm the learning rate lr is

multiplied times the negative of the gradient to

determine the changes to the weights and biases. This

change has been described in section 2.2. If the new

error exceeds the old error by more than a predefined

ratio, max_perf_inc, the new weights and biases are

discarded. In addition, the learning rate is decreased by

multiplying by lr_dec. Otherwise, the new weights, etc.,

are kept. If the new error is less than the old error, the

learning rate is increased by multiplying by lr_inc.

In trainrp algorithm the size of the weight change

is determined by a separate update value. The update

value for each weight and bias is increased by a factor

delt_inc whenever the derivative of the performance

function with respect to that weight has the same sign

for two successive iterations.

The update value is decreased by a factor delt_dec

whenever the derivative with respect to that weight

changes sign from the previous iteration. If the

derivative is zero, then the update value remains the

same. delta0 and deltamax are the initial step size and

the maximum step size, respectively. The performance

of Rprop is not very sensitive to the settings of the

training parameters [4].

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :94-105

 99

Training without Noise

The network is initially trained without noise for a

maximum of 1000 epochs or until the network sum-

squared error falls beneath 0.001.

P = number;

T = targets;

net.performFcn = 'sse';

net.trainParam.goal = 0.001;

net.trainParam.show = 50;

net.trainParam.epochs = 1000;

[net,tr] = train(net,P,T);

Training with Noise

To obtain a network not sensitive to noise, we

trained with two ideal copies and two noisy copies of the

vectors in number. The target vectors consist of four

copies of the vectors in target. The noisy vectors have

noise of mean 0.1 and 0.2 added to them as shown in

fig.(3 a & b) below. This forces the neuron to learn how

to properly identify noisy numbers, while requiring that

it can still respond well to ideal vectors.

To train with noise, the maximum number of

epochs is reduced to 250 and the error goal is increased

to 0.1, reflecting that higher error is expected because

more vectors (including some with noise), are being

presented.

netn = net;

netn.trainParam.goal = 0.1;

netn.trainParam.epochs = 250;

T = [targets targets targets targets];

for pass = 1:10

P = [number, number, ...

(number + randn(R,Q)*0.1), ...

(number + randn(R,Q)*0.2)];

[netn,tr] = train(netn,P,T);

end

Once the network is trained with noise, it makes

sense to train it without noise once more to ensure that

ideal input vectors are always classified correctly.

Therefore, the network is again trained with code

identical to the previous section.

Results

The purpose of this study was to compare the

training speeds of two neural network learning

algorithms (gda and Rprop), when exposed to ten

numeral recognition data sets. Based on previous

studies, it was hypothesized in this project that if the

learning algorithm used is resilient (Rprop), then it will

have a quicker convergence time (fewer training cycles,

or epochs) than gda, when both exposed to the same

numeral recognition training data.

Data collection for this study was done by

collecting a log file of all outputs from the neural

network simulator (Matlab NN Toolbox). There were

ten trials of each algorithm (Rprop and gda) for each

data set (basic and noisy). The algorithms were

compared against each other for speed of training. The

log files contained measurements of the Sum Squared

Error (SSE) versus the number of training epochs. These

total training time values were considered the dependent

variable in this study. These values where assembled

into two tables, one for the basic data set in the appendix

Table (A.1), and one for the complex data set Table

(A.2).

For the basic data set, there was a significant

difference between the two algorithms, indicating that

Rprop trained faster than gda as clear from Table (A.1).

This difference is also well indicated by the means of the

basic data set training times, with Rprop’s mean being

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :94-105

 100

66.3 epochs, and gda’s being 473.8 epochs, a difference

of approximately seven times. A second test was

conducted on the noisy data set, to compare the

algorithms in a different situation. Also Table (A.2)

indicating that there was significant difference between

the training times of the two algorithms. This was also

indicated fairly well by the means of the two training

times, with Rprop's being 47.2 epochs, and gda's at 114,

a difference of approximately two and a half times.

The Rprop algorithm trained faster than the gda

algorithm for the basic data set as well as the complex

data. This would indicate that for true number

recognition problem Rprop is a better choice for training

its neural networks.

There were no problems encountered in this study.

Possible confounding variables were the small size of

the training set and the small number of networks

trained (only ten per algorithm, per data set). Further

exploration into this topic is certainly warranted.

System Performance

The reliability of the neural network pattern

recognition system is measured by testing the network

with hundreds of input vectors with varying quantities of

noise. This paper tests the network at various noise

levels, and then graphs the percentage of network errors

versus noise (see Appendix B). Noise with a mean of 0

and a standard deviation from 0 to 0.5 is added to input

vectors. At each noise level, 100 presentations of

different noisy versions of each number are made and

the network’s output is calculated. The output is then

passed through the competitive transfer function so that

only one of the 10 outputs (representing the perfect

number of the ten numbers), has a value of 1. The

number of erroneous classifications is then added and

percentages are obtained as shown in the Appendix C

graph.

The solid line on the graph shows the reliability

for the network trained with and without noise. The

reliability of the same network when it had only been

trained without noise is shown with a dashed line. Thus,

training the network on noisy input vectors greatly

reduces its errors when it has to classify noisy vectors.

The network trained with gda Algorithm did not make

any errors for vectors with noise of mean from 0.0 to

0.2. When noise of mean 0.25 was added to the vectors

both networks began making errors. While the network

trained with Rprop Algorithm did not make any errors

for vectors with noise of mean from 0.0 to 0.05. When

noise of mean 0.1 was added to the vectors both

networks began making errors. This means that Rprop

Algorithm has more error in training noisy inputs.

If a higher accuracy is needed, the network can be

trained for a longer time or retrained with more neurons

in its hidden layer. Also, the resolution of the input

vectors can be increased to a 10-by-14 grid. Finally, the

network could be trained on input vectors with greater

amounts of noise if greater reliability were needed for

higher levels of noise.To test the system, a number with

noise can be created and presented to the network.

noisy9 = number(:,10)+randn(35,1) * 0.2;

plotchar(noisy9);

A2 = sim(net,noisy9);A2 = compet(A2);

answer = find(compet(A2) = = 1);

plotchar(number(:,answer));

Here is the noisy number and the number the

network picked (correctly) as shown in Fig.(4).

The network is trained to output a 1 in the correct

position of the output vector and to fill the rest of the

output vector with 0’s. However, noisy input vectors

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :94-105

 101

may result in the network not creating perfect 1’s and

0’s. After the network is trained the output is passed

through the competitive transfer function compet. This

makes sure that the output corresponding to the number

most like the noisy input vector takes on a value of 1,

and all others have a value of 0. The result of this post-

processing is the output that is actually used.

Conclusions

Comparison of the results of the study indicated

that:-

The original research hypothesis that Rprop would

perform faster in all cases was proven correct. However,

since Rprop performed much better than gda during the

basic trials, it can be inferred that the hypothesis is

supported for our problems.

To eliminate the possible confounding variables in

this study, the number of trials could be increased and

the size of the data sets also enlarged.

Other back-propagation based algorithms could be

comparatively tested fairly easily, utilizing the same data

sets and similar network structures.

This problem demonstrates how a simple pattern

recognition system can be designed. Note that the

training process did not consist of a single call to a

training function. Instead, the network was trained

several times on various input vectors. In this case,

training a network on different sets of noisy vectors

forced the network to learn how to deal with noise, a

common problem in the real world.

References:

1. Ben, K. and Patrick S. (1996). An Introduction to

Neural Networks. Eighth Edition. November 1996.

2. Fahlman, S. (1988). An Empirical Study of Learning

Speed in Back-Propagation Networks. Carnegie

Mellon: CMU-CS-88-162

3. Firas, H. (2000). Handwritten Numeral Recognition

Using Neural Networks. EE368, Stanford University.

27 May, 2000. Available at

http://scien.stanford.edu/class/ee368/projects2000/pr

oject/node1.html.

4. Goss, N. J. (2000). Resilient Backpropagation versus

Quickprop for Character Recognition in Neural

Networks.

5. Howard, D. and Mark, B. (2002). Neural Network

Toolbox for use with Matlab. 'User's Guide Version

4'. July 2002.

6. Jacek, M. Zurada (1996). Introduction to Artificial

Neural Systems.

7. Klimis, S. (2000). Hand Gesture Recognition Using

Neural Networks

8. Riedmiller, M. (1994). Rprop - Description and

Implementation Details Technical Report. University

of Karlsruhe: W-76128 Karlsruhe.

9. Riedmiller, M. (1994). Advanced Supervised

Learning in Multi-layer Perceptrons From

Backpropagation to Adaptive Learning Algorithms.

University of Karlsruhe: W-76128 Karlsruhe.

10. Riedmiller, M. and H. Braun 1993. A direct adaptive

method for faster backpropagation learning: The

RPROP algorithm. Proceedings of the IEEE

International Conference on Neural Networks, San

Francisco, 1993.

11. Sang-W. M. and Seong-G. K. (2002). Pattern

Recognition with Block-based Neural Networks. 0-

7803-7278-6/2002 ©2002 IEEE.

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :94-105

 102

Fig. (1) Graphics of Basic Inputs Numeral

Fig.(2) Neural Network Structure for Our Problem

(a)

(b)

Fig.(3) Graphics of Noisy Data Numeral

(a) with 0.1 noise added (b) with 0.2 noise added

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :94-105

 103

(a) (b)

Fig.(4) Tested Number

(a) Correct number (b) Noisy number

Table 1 – Algorithm Parameters

Parameters of

Gda Algorithm

Parameters of

Rprop

Algorithm

epochs: 1000

show: 50

goal: 0.001

lr: 0.0100

lr_inc: 1.0500

lr_dec: 0.7000

max_fail: 5

max_perf_inc:

1.0400

min_grad:

1.0000e-006

time: Inf

epochs: 1000

show: 50

goal: 0.001

delta0: 0.0700

delt_inc: 1.2000

delt_dec: 0.5000

max_fail: 5

deltamax: 50

min_grad:

1.0000e-006

Time: Inf

Appendix A: Training Data Tables
Basic Data Set

Total Training Time (epochs)

Gda Rprop

516 62

479 66

365 62

426 66

468 62

433 67

469 58

486 73

551 66

545 81

Mean=

473.8 66.3

Complex Data Set

Total Training Time

(epochs)

Gda Rprop

118 24

139 59

133 15

135 59

120 15

127 81

123 68

108 18

129 87

126 45

Mean=

125.9 47.2

Appendix B: Error Performance Graph

Fig. (B.1) Error Performance of gda training

Algorithm

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :94-105

 104

Fig. (B.2) Error Performance of Rprop training

Algorithm

Appendix C: Percentage Error Graph

Fig. (C.1) Percentage Error for gda training

Algorithm

Fig. (C.2) Percentage Error for Rprop training

Algorithm

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :94-105

 105

 معدل سرعة تدريب متكيف بالمقارنة مع الارتداد العكسي المرن للشبكة العصبية
 لتمييز الأعداد

 منتصر عبدالواحد سلمان

Email: muntaserabd1@yahoo.com

 الخلاصة:
صهم وتقييمهم في محاولةة يياةاد طريقةة تةدريب شةبكة عصةبية مناسةبة لمشةك ة فح تدريبهم، استخدامهم،نوعين من طرق تدريب الشبكات العصبية تم

عة تةةدريب تمييةةا اقرمةةام العشةةريةض ال ةةر مةةن مةةرا البحةةت مقارنةةة سةةرعة تةةدريب خواراميةةات الشةةبكات العصةةبية رات ايرتةةداد العكسةةي التةةي تسةةتخدم معةةد سةةر
 numeralعنةد تةدريب شةبكة عصةبية لتمييةا اقعةداد العشةر Resilientعة تدريب مةرن مع ت ك التي تستخدم معد سر Adaptive learning rateمتكيف

recognition د للأرمام العربيةض ك خواراميةة تةم تةدريبها باسةتخدام عشةر ماةاميع مةن اقرمةام العشةرية كماموعةة ثساسةية يتموية ونةاوية وكةرلك ماموعةة معقة
يةةا ض الدراسةةة المشةةار اليهةا ثوبتةةت واةةود فةرق وارةةت بةةين الطةةريقتين بالماموعةة اقساسةةية فرةةد عةن المشوشةةة حيةةت ان تةدريب الشةةبكات العصةةبية لتمييمشوشةةة

 ثسرع لهره المشك ة يتمييا اقعدادةض Resilientاقعداد باستخدام معد سرعة تدريب مرن
حيةةت يحتةةو MATLABالمةةاتدب MathWorksصةةبية تةةم باسةةتخدام ماموعةة بةةرام انشةةا, ، تةةدريب وفحةةز خواراميةةات تةةدريب الشةةبكات الع

 ع ةةص صةةندوق ثدوات الشةةبكات العصةةبية الةةر سةةه مةةن عم يةةة انشةةا, وتةةدريب وفحةةز الشةةبكات العصةةبية واختصةةار بومةةت وك ةةة برماةةة طةةرق التةةدريب لهةةره
 الشبكات العصبيةض

mailto:muntaserabd1@yahoo.com

