
P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :169-178

 169

 BITMAP INDEX: A DATA STRUCTURE FOR FAST FILE

RETRIEVAL

Murtadha M. Hamad

College of Computer-Al-Anbar University

A R T I C L E I N F O A B S T R A C T

Received: 1 / 4 /2008
Accepted: 24 / 4 /2008

Available online: 30/4/2008

DOI: 10.37652/juaps.2008.15456

 Bitmap structure indexes are usually used in database environments which

have large amount of data. Bitmap reduces response time and storage requirements

for large database compared to other data structures like B- tree. In this research, the

Bitmap structure is studied and analyzed using Visual Foxpro-8 Software. The

empirical study proved the efficiency of this structure for compressing keys.A

Comparison between this structure and B-tree was done as an example to explain

more advantages for Bitmap structure.

Keywords:

Bitmap, Indexes,

B-tree,

compressed keys,

Retrieval Time.

Introduction

As computers become more pervasive, many

scientific and commercial endeavors are collecting or

generating tremendous amount of data. Typically a

relative smaller number of records contain the keys to

new insight or new trends[1, 2].

Bitmap indices are a specialized type of index

designed for easy querying on multiple keys, although

each bitmap index is built on single key. For bitmap

indices to be used, records in a relation must be

numbered sequentially, starting from, say , 0 , Given

a number n ,it must be easy to retrieve the record

number n.

This is particularly easy to achieve if records are

fixed in size, and allocated on consecutive blocks of a

file. The record number can then be translated easily

into a block number and a number that identifies the

record within the block.

Bitmap Index Structure

A bitmap is simply an array of bits. In its

simplest form, a bitmap index on the attribute A of

relation r consists of one bitmap for each value that A

* Corresponding author at: College of Computer-Al-Anbar

University, Iraq.E-mail address: mortadha61@yahoo.com

can take. Each bitmap has as many bits as the number

of records in the relation. The ith bit of the bitmap for

value vi is set to 1 if the record numbered i has the

value vi for attribute A. All other bits of the bitmap are

set to 0.

In this example, there is one bitmap for the

value m and one for f. The ith bit of the bitmap for m is

set to 1 if the gender value of the record numbered i is

m. All other bits of the bitmap for m are set to 0.

Similarly, the bitmap for f has the value 1 for bits

corresponding to records with the value f for the

gender attribute; all other bits have the value 0. Figure

1 shows an example of bitmap indices on a relation

customers. [3]

We now consider when bitmaps are useful. The

simplest way of retrieving all records with value m (or

value f) would be to simply read all records of the

relation and select those records with value m (or f,

respectively). The bitmap index doesn't really help to

speed up such a selection, as shown in Appendix A.

mailto:mortadha61@yahoo.com

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :169-178

 170

cu
st

-i
d

n
a

m
e

g
en

d
er

M
a

r_
st

a
tu

s

re
g

io
n

In
_

le
ve

l

B
it

m
a

p
s

fo
r

g
en

d
er

B
it

m
a

p
s

fo
r

in
_

le
ve

l

0

a
li

m

m
a

rr
ie

d

ce
n

tr
a

l

L
1

m

1
0

0
1

0

L
1

1
0

1
0

0

1

le
n

a

f

si
n

g
le

w
es

t

L
2

f

0
1

1
0

1

L
2

 0
1

0
0

0

2

n
o

o
r

f

m
a

rr
ie

d

ce
n

tr
a

l

L
3

L
3

 0
0

0
0

1

3

o
m

a
r

m

m
a

rr
ie

d

ea
st

L
4

L
4

 0
0

0
1

0

4

sa
ly

f

si
n

g
le

w
es

t

L
5

L
5

 0
0

0
0

0

Figure 1. Bitmap indices on relation customers..

In fact, bitmap indices are useful for selections

mainly when there are selections on multiple keys.

Suppose we create a bitmap index on attribute in-

level(income-level), which we described earlier, in

addition to the bitmap index on gender.

Consider now a query that selects women with

income in the range 70.000-89.999. This query can be

expressed as
)(2 rLlevelincomefgender

. To evaluate

this selection, we fetch the bitmaps for in_level value

L2, and perform an intersection (logical-and) of the

two bitmaps. In other words, we compute a new

bitmap where bit i has value 1 if the ith bit of the two

bitmaps are both 1, and has a value 0 otherwise. In the

example in Figure(1), the intersection of the bitmap for

gender=f (01101) and the bitmap for in_level=L2

(01000) gives the bitmap 01000.

Since the first attribute can take 2 values, and

the second can take 5 values, we would expect only

about 1 in 10 records, on an average, to satisfy a

combined condition on the two attributes. If there are

further conditions, the fraction of records satisfying all

the conditions is likely to guitar small. The system can

then compute the query result by finding all bits with

value 1 in the intersection bitmap and retrieving the

corresponding recodes. If the fraction is large,

scanning the entire relation would remain the cheaper

alternative.

Another important use of bitmaps is to count the

number of topples satisfying a given selection. Such

queries are important for data analysis. For instance, if

we wish to find out how many women have an income

level L2, we compute the intersection of the two

bitmaps and then count the number of bits that are 1 in

the intersection bitmap. We can thus get the desired

result from the bitmap index, without even accessing

the relation.

3. Bitmap and Degree of Cardinality

The advantages of using bitmap indexes are

greatest for columns in which the ratio of the number

of distinct values to the number of rows in the table is

small. We refer to this ratio as the degree of

cardinality. A gender column, which has only two

distinct values (male and female), is optimal for a

bitmap index. However, data warehouse administrators

also For example, on a table with one million rows, a

column with 10,000 distinct values is a candidate for a

bitmap index. A bitmap index on this column can

outperform a B-tree index, particularly when this

column is often queried in conjunction with other

indexed columns. In fact, in typical large database

environments, a bitmap index can be considered for

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :169-178

 171

any non-unique column. B-tree indexes are most

effective for high-cardinality data: that is, for data with

many possible values, such as customer name or phone

number. In a data warehouse, B-tree indexes should be

used only for unique columns or other columns with

very high cardinalities (that is, columns that are almost

unique). The majority of indexes in a data warehouse

should be bitmap indexes.

In ad hoc queries and similar situations, bitmap

indexes can dramatically improve query performance.

AND and OR conditions in the WHERE clause of a

query can be resolved quickly by performing the

corresponding Boolean operations directly on the

bitmaps before converting the resulting bitmap to

rowids. If the resulting number of rows is small, the

query can be answered quickly without resorting to a

full table scan.

Query No.1 with Bitmap Index

 The following table shows a portion of a

company's customers table(appendix A).

SELECT cust-id, gender, mar_status, in_level

FROM customers;

cust_id geder mar_status in_level

build bitmap indexes on columns with higher

cardinalities [4].

70 f L2: 70,000 - 89,999

80 f married L6: 150,000 - 169,999

90 m single L6: 150,000 - 169,999

100 f L7: 170,000 - 189,999

110 f married L1: 50,000 - 69,999

120 m single L4: 110,000 - 129,999

130 m L8: 190,000 - 249,999

140 m married L5: 130,000 - 149,999

__

Because gender, mar_status, and cust_in_level

are all low-cardinality columns (there are only three

possible values for marital status and region, two

possible values for gender, and 8 for income level),

bitmap indexes are ideal for these columns. Do not

create a bitmap index on cust_id because this is a

unique column. Instead, a unique B-tree index on this

column provides the most efficient representation and

retrieval.

Table 1 illustrates the bitmap index for the gender

column in this example. It consists of two separate

bitmaps, one for gender.

gender='m' gender='f
cust_id 70 0 1

cust_id 80 0 1

cust_id 90 1 0

cust_id 100 0 1

cust_id 110 0 1

cust_id 120 1 0

cust_id 130 1 0

cust_id 140 1 0

Each entry (or bit) in the bitmap corresponds

to a single row of the customers table. The value of

each bit depends upon the values of the corresponding

row in the table. For example, the bitmap

cust_gender='f' contains a one as its first bit because

the gender is f in the first row of the customers table.

The bitmap cust_gender='f' has a zero for its third bit

because the gender of the third row is not f.

Query No.2 with Bitmap Index

 An analyst investigating demographic trends

of the company's customers might ask, "How many of

our married customers have an income level of G or

H?" This corresponds to the following SQL query:

SELECT COUNT(*) FROM customers

WHERE mar_status = 'married' AND in_level

IN ('H: 150,000 - 169,999', 'G: 130,000 - 149,999');

Bitmap indexes can efficiently process this

query by merely counting the number of ones in the

bitmap illustrated in Figure 2. The result set will be

found by using bitmap or merge operations without the

necessity of a conversion to rowids. To identify

additional specific customer attributes that satisfy the

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :169-178

 172

criteria, we use the resulting bitmap to access the table

after a bitmap to rowid conversion.

Figure 2. Executing a Query Using Bitmap Indexes

Bitmap Index Performance

Introduction

While the query performance issues of on-line

transaction processing (OLTP) systems have been

extensively studied [5] and are pretty much well-

understood, the state-of-the-art for Decision Support

Systems (DSS) is still evolving as indicated by the

growing active research in this area [6].

Bitmap Indexes for Selection Queries with

Attribute Value Decomposition

In this section, we present a framework to

examine the design space of indexes for selection

queries.Let C denote the attribute cardinality; i.e., the

number of distinct actual values of the indexed

attribute. The attribute cardinality is generally smaller

than the cardinality of the attribute domain; i.e, the

number of all possible values of the indexed attribute.

Without loss of generality and to keep the presentation

simple, we assume in this paper that the actual

attribute values are consecutive integer

values from 0 to C-1.

In particular, considering the Value-List index

again, we observe that each attribute value is

represented as a single digit (in base-C arithmetic), this

digit being encoded in bits by turning exactly one out

of C bits on[7]. The arithmetic we choose for the value

representation, i.e., the decomposition of the value in

digits according to some base, and the encoding

scheme of each digit in bits are the two dimensions of

the space and are analyzed below with the following

algorithm:.

Attribute Value Decomposition Algorithm with

Modification:

Inputs:

An attribute value v and a sequence of (n-1)

numbers <bn-1,bn-2,…,b1> .

Outputs:

{Bi
ni-1, Bi

ni-2, …, Bi
0} , where ni denote the

number of bitmaps in the ith

 component of an index .

Step 1: define

bn=

1

1

n

i
bi

C
 Then v can be decomposed

into a sequence of n digits <vn,

vn-1,… , v1> ,(Let C denote the attribute

cardinality; i.e., the number of

distinct actual values of the indexed attribute.)

 as follows :

v = V1

 = V2b1 + v1

 = V3(b2b1) + v2b1 + v1

 = V4(b3b2b1) + v3(b2b1) + v2b1 +v1

 = …..

= vn

1

1

n

j

jb + … + vi

1

1

i

j

jb

+ … + v2b1 + v1 ,

where vi = Vi mod bi , Vi =

1

1

i

i

b

v
 , 1 < i

<= n , and each digit v i is in the range

0<=vi<bi .

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :169-178

 173

Step2: Each choice of n and sequence <bn , bn-1, … ,

b1> gives a different representation of attribute values

, and therefore a different index .

Step3: An index is well-defined if bi>=2 ,1<=i <=n

.The sequence <bn , bn-1, …,

 b1> is the base of the index , which is in turn

called a base - <bn , bn-1, … ,

 b1q > index .

Step4: If bn = bn-1= …= b1 = b, then the base is called

uniform and the index is called

 base-b for short . The index consists of n

components

Step5: Let ni denote the number of bitmaps in the ith

component of an index and

 {Bi
ni-1, Bi

ni-2, …, Bi
0} denote the (Output)

collection of ni bitmaps that form

 the ith component .

Numerical Example for algorithm:

Figure 3 shows a base-<3,3> Value-List index

(based on the 12-record relation R) . By decomposing

a single-component index into a 2-component index,

the number of bitmaps has been reduced from 9 to 6,

i.e the compression ratio approximated to 30% of

original space.

 A (R) 2

2B 1

2B 0

2B 2

1B 1

1B 0

1B

1

2

3

4

5

6

7

8

9

10

11

12

3

2

1

2

8

2

2

0

7

5

6

4

031

230

130

230

232

230

230

030

132

231

032

131

0

0

0

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

1

0

1

0

1

1

1

0

1

1

1

0

0

0

0

0

1

0

1

1

1

1

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

Figure 3 shows a base-<3,3> Value-List

index(Value Decomposition Algorithm based on

the 12-record relation R)

Join index:

In addition to a bitmap index on a single table,

we can create a bitmap join index, which is a bitmap

index for the join of two or more tables.

This method is used to speed up specific join

queries. A join index maintains the relationships

between a foreign key with its matching primary keys.

The specialized nature of star schemas makes join

indices especially attractive for decision support [8].

We use the following example to illustrate the

join index. Let us consider the two relations ((Sale))

and ((Product)) shown in Tables 1 and 2.

If we perform join on sale. Prod -id = prod-id,

and recompute the result, we can obtain the join index

as shown in Table 3. Note that the result shown in

Table 3 has the same effect of Table 4, which

represents a materialized view.

In bitmap indexing, each attribute has its own

bitmap index table. Bitmap indexing reduces join,

aggregation, and comparison operations to bit

arithmetic. Join indexing records the joinable tuples of

two or more relations from a relational database,

reducing the overall cost of OLAP join operations.

Bitmapped join indexing, which combines the

bitmap and join methods, can be used to further speed

up OLAP query processing. Suppose we have very

few products to consider, then the bitmap can be used

for products. (This is a very important condition to

check. It is not appropriate if there are many products.)

The join index table after the bitmap technique is

incorporated is shown in Table 5.

Indexing is important to materialized views for

two reasons. Indexes for a materialized view reduce

the cost of computation to execute an operation

(Analogous to the use of an index on the key of a

relation to decrease the time needed to locate a

specified tuple ; indexing also reduces the cost of

maintenance of the materialized views. One important

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :169-178

 174

problem in data warehousing is the maintenance of

materialized views due to changes made in the source

data. Maintenance of materialized views can be a very

time consuming process. There need to be some

method developed to reduce this time (one method is

use of supporting views and / or the materialized of

indexes).

Table 1 The sale table

A
m

o
u

n
t

D
a

te

S
to

re
 –

 i
d

P
ro

d
 –

 i
d

R
id

12

11

50

8

44

4

1

1

1

1

2

2

C1

C1

C3

C2

C1

C2

P1

P2

P1

P2

P1

P1

R1

R2

R3

R4

R5

R6

Table 2 The Product Table

P
ri

ce

N
a

m
e

ID

1
0

5

B
o

lt

N
u

t

P
1

P
2

Table 3 Example of a join index

P
ro

d
u

ct
-i

d

R
id

P
1

P
2

R
1

 ,
 R

3
 ,

 R
5
 ,

 R
6

R
2

 ,
 R

4

Table 4 A Materialized view

Rid
Prod-

id
Name Price

Store-

id
Date Amount

R1

R2

R3

R4

R5

R6

P1

P2

P1

P2

P1

P1

Bolt

Nut

Bolt

Nut

Bolt

Bolt

10

5

10

5

10

10

C1

C1

C3

C2

C1

C2

1

1

1

1

2

2

12

11

50

8

44

4

Table 5 combined join / Bitmap Indexing

P
1

P
2

S
a

le
.p

ro
d

-i
d

1

0

0

1

R
1

,
R

3
 ,
 R

5
 ,
 R

6

R
2

 ,
 R

4

Comparison study between Bitmap and B-tree

structures:

 The potential of using bitmap index to

significantly improve the query performance did not

go unnoticed by the database vendors. For example,

ORACLE and Sybase IQ have implemented different

bitmap indexes.

However, bitmap indexes are not as popular as

B-trees because most of the existing databases

products are designed initially for transactional data,

where any index on data must be updated quickly as

data records are modified. This is required in

transactional applications, but for majority of the data

analysis applications, such large database or scientific

data management, the data to be queried is not

modified, at least not modified frequently. In these

cases, a new physical data layout and a new set of

indexing techniques are more appropriate.

Through the theoretical and empirical study of

the two types of index, we got differences related to

the two types as in the following table:

Table 6 Differences related to the two types
 Bitmap Index B- tree index

1.

Bitmap indexes are

typically only a

fraction of the size of

the indexed data in the

Fully indexing a large

table with a traditional

B-tree index can be

prohibitively expensive

http://www.oracle.com/technology/pub/articles/sharma_indexes.html
http://infocenter.sybase.com/help/topic/com.sybase.dc00170_1270/html/iqapg/iqapg286.htm
http://sdm.lbl.gov/sdmcenter
http://sdm.lbl.gov/sdmcenter

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :169-178

 175

2.

3.

4.

5.

table.

Bitmap indexes store

the bitmaps in a

compressed

way(effective for low-

cardinality data). If the

number of distinct key

values is small, bitmap

indexes compress

better and the space

saving benefit

compared to a B-tree

index becomes even

better.

In many cases, it may

not be necessary to

index these columns in

a data warehouse,

because unique

constraints can be

maintained without an

index, and because

typical data warehouse

queries may not work

better with such

indexes.In general,

bitmap indexes should

be more common than

B-tree indexes in most

data warehouse

environments.

Bitmap indexes on

partitioned tables are

always local.

 Implements the OLAP

(On-Line Analytical

Processing).

in terms of space

because the indexes

can be several times

larger than the

data in the table.

B-tree indexes are most

effective for high-

cardinality data: that is,

for data with many

possible values, such as

customer_name or

phone_number.

.B-tree indexes are

most commonly used

in a data warehouse to

index unique or near-

unique keys B-tree

indexes are more

common in

environments using

third normal form

schemas.

B-tree indexes on

partitioned tables can

be global or local.

Implements the OLTP

(On-Line Analytical

Processing).

Reference will be made in the next paragraph (7)

analytically to the differences between the two types of

index.

Performance Analysis for Time Retrieval:

Through this study of Bitmap Structure , and by

applying a number of queries with different sizes of

the number of optional records (reaches half million

records) concerned with the relation (customers)

referred to in appendix (A), and when applying this on

queries varying in complexity and on the cases of

index , (Bitmap) and (B-tree) , the following table was

obtained(Table 7) .

Table 7 Performance time for two Index types

T
im

e(
S

ec
.)

 u
si

n
g

 B
-

T
re

e

T
im

e(
S

ec
.)

 u
si

n
g

B
it

m
a

p

S
el

ec
te

d
 A

tt
ri

b
u

te

(F
ie

ld
)

 Q
u

er
y

 N
o

.

3
.0

4

8
.0

1
 C

u
st

-i
d

 1
.

4
.0

3

7
.0

2

N
a

m
e

 2
.

6
.0

0

2
.0

4

G
en

d
er

 3
.

7
.5

0

2
.0

1

In
-l

ev
el

 4
.

We notice from the above table that the

performance is good in dealing with the index type

(Bitmap) when number of distinct values used in the

meant attribute in the relation is low or what when is

called Degree of Cardinality is high.

And the opposite is true concerning the

performance of B-tree .It is better when DoC is low,

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :169-178

 176

i.e. the Attribute approaches the state Unique.(Figure

4).

Conclusions and Future Works:

In this paper, we have presented a simple

framework to study the implementation of bitmap

indexes for selection queries, and have examined the

performance of two types of indexing. The study has

reached the following conclusions:

 Bitmap indexes store the bitmaps in a compressed

way. If the number of distinct key values is small,

bitmap indexes compress better and the space

saving benefit compared to a B-tree index

becomes even better. The applied algorithm

(paragraph 4.2) was dealt with after it was

readjusted through an arithmetic model. This led

to compress the keys 30-5o% of the original

space through the empirical experiment.

 The use of the logical devices NOT, XOR, AND

and OR has an important role when it exists in

the query in achieving better performance when

dealing with the index Bitmap.Bitmap indexes

are greatest for columns in which the ratio of the

number of distinct values to the number of rows

in the table is small.

Concerning the future works, we suggest the

following:

Using association rules for data mining to improve

the efficiency of execution time of Query.

Implement the binary tree structure for the bitmap

representation.

 Apply the concept of grouping to process the

complex queries and using more statistical and

mathematical tools to support the OLAP for

Bitmap structure. References

1. J.Becla and D.L. Wang, Lessons Leamed from

managing apetabyte, CIDR, 2005.

2. J.Gray D.T .Liu, M. Nieto-Santisteb an, A. Szalay

, D. Dewitt, and G. Heber. Scientific Data

management in the coming decade .CT watches

Quarterly, February, 2005

.3.Avi Silberschatz, Hank Korth, S. Sudarshan,

Database System Concepts, p520-523, 5th ed,

2006.

4. Paul Lane, Oracle Database Data Warehousing

Guide, 10g Release 1 (10.1) Part No. B10736-01,

Copyright © 2001, 2003 Oracle Corporation.

5. G. Graefe. Query Evaluation Techniques for

Large Databases. Computing Surveys, 25(2):73–

170, 1993.

6. S. Chaudhuri and U. Dayal. An Overview of Data

Warehousingand OLAP Technology. ACM

SIGMOD Record, 26(1):65–74, March 1997.

7. Chee-Young and E. yannis, Bitmap Index Design

and Evaluation, Department of Informatics,

University of Athens, 1997.

8. Chen. Zhengxin, Data Mining and Uncertain

Reasoning, p73-75, by John Wiley and Sons,

2001.

0

1

2

3

4

5

6

7

8

9

(Field) Cust-id Name Gender In-level

T
i
m

e

 Time(Sec.) using B-

Tree

Time(Sec.) using

Bitmap

Figure 4 shows the different fields used for two

Index types (Data of Table 7)

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :169-178

 177

Appendix (A)Tables(Relations) Specifications for

Optional Database

1) Table Name : Customer

O
th

er
 C

a
p

ti
o
n

T
y

p
e

F
ie

ld
 N

a
m

e

P
ri

m
a

ry

k
ey

C
u

st
o

m
er

 -

id

n
u

m
er

ic
 (

6
)

C
u

st
-i

d

C
u

st
o

m
er

 –

N
a

m
e

ch
a

ra
ct

er

(5
0

)
 N

a
m

e

C
u

st
o

m
er

 –

g
en

d
er

lo
g

ic
a

l
 G

en
d

er

C
u

st
o

m
er

 –

m
a

ri
ta

l

st
a

tu
s

ch
a

ra
ct

er

(7
)

M
a

r-
st

a
tu

s

C
u

st
o

m
er

 –

a
d

d
re

ss

ch
a

ra
ct

er

(1
0

)
 R

eg
io

n

C
u

st
o

m
er

-

in
co

m
e

L
ev

el

ch
a

ra
ct

er

(2
)

In
-l

ev
el

2) Table Name : Sale

O
th

er
 C

a
p

ti
o
n

T
y

p
e

F
ie

ld
 N

a
m

e

P
ri

m
a

ry

k
ey

 R
ea

d
-i

d
 N
u

m
er

ic
(6

)

R
id

P
ro

d
u

ct
-i

d

N
u

m
er

ic
(6

)

P
ro

d
 –

 i
d

S
to

re
-i

d

co
d

e

N
u

m
er

ic
(6

)

S
to

rd
-i

d

D
a

te
 o

f

st
o

re

D
a

te

D
a

te

A
m

o
u

n
t

o
f

p
ro

d
u

ct

N
u

m
er

ic
(6

)

A
m

o
u

n
t

3) Table Name : product

O
th

er
 C

a
p

ti
o
n

T
y

p
e

F
ie

ld
 N

a
m

e

P
ri

m
a

ry

k
ey

p
ro

d
u

ct

-

id

N
u

m
er

ic
(6

)

id

p
ro

d
u

ct
 –

N
a

m
e

ch
a

ra
ct

er

(3
0

)
 N

a
m

e

p
ro

d
u

ct
 –

p
ri

ce

F
lo

a
t(

1
0
.3

)

P
ri

ce

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :169-178

 178

 للاسترجاع السريع للملفات (Bitmap)هيكل بيانات الفهرسة

 مرتضى محمد حمد

Email :mortadha61@yahoo.com

 الخلاصة
ت هيكل بتقليل وقيقوم هذا ال .ذاتالكميات الهائلة من البيانات والتي تتعامل مع قواعد البياناتفي البيئات (Bitmap)هيكل البيانات عمليست

برامجيات فوكس برو ا الهيكل بأستخدام في هذا البحث تم دراسة وتحليل هذ . (B-tree)مقارنة مع هياكل بيانية اخرى مثل االتخزين الاستجابة ومتطلبات
لتبيان نموذجك (B-tree)اجريت مقارنة بين هذا الهيكل وهيكل رص او ضغط المفاتيح.ة هذا الهيكل في اءالدراسة العملية اثبتت كفوقد اثبتت , 8-

 .(Bitmap)للهيكل الاكثرالفوائد

