Document Type : Research Paper

Author

Baghdad University - College of Science

10.37652/juaps.2011.15475

Abstract

تم حساب ترددات الاهتزاز وشدد امتصاص طیف الاشعة تحت الحمراء, لجمیع الاحداثیات الداخلیة لجزیئة [6] سایکلاسین نوع (Armchair) و بعددها 3N–6)) و مناقشتها تماثلیا و تأصریا وفق نظریة دوال الکثافة (DFT) وباسلوب (B3LYP) وعناصر قاعدة (6-311G). کانت قیم ترددات الاهتزاز المحسوبة قریبة من القیم التجریبیة للعدد القلیل جدا من قیم ترددات الاهتزاز المستخرجة للانابیب المبنیة من هذا النوع من الجزیئات. و عند مقارنة نتائج الحسابات، وجد بأن ترددات الاهتزاز للانماط المتماثلة لحرکات المط التآصریة أعلى من تلک غیر المتماثلة لاواصر (C-H) والعکس لاواصر (C-C)، و تکون ترددات الاهتزاز غیر المتماثلة للحرکات الانثنائیة (CH) و (CC) أعلى من نظائرها المتماثلة. ویمکن تلخیص هذه العلاقات بالاتی: sym.CH str. > asym. CH str. و بصورة عامة نجد أن:sym CC str. < asym. CC str. C=C str. (circum.) >  C--C str. (axial.) >  C-C str. (circum.)و أن:sym (C=C str.) < asym (C=C str.) circum. sym (C--C str.) < asym (C--C str.) axial sym (C-C str.) < asym (C-C str.) circum. حیث (C-Caxial) هی اطوال اواصر کاربون کاربون المتجهه على طول المحور العمودی فی الجزیئة، اما (C-Cc) فهی اطوال اواصر کاربون-کاربون المتجهه على طول محیط الجزیئة. کما تم و بدقة تعیین جمیع ألانماط الاهتزازیة العائدة للحرکات الانبعاجیة و التنفسیة والانحنائیة باتجاه وعکس اتجاه عقرب الساعة، و التی تعود الیها التشوهات الحاصلة من جراء الاهتزاز. أیضا تم حساب و دراسة توزیع الکثافة الالکترونیة على ذرات هذه الجزیئة، و کانت النتائج متوافقة مع الصفات الفیزیاویة والتوصیلیة للانابیب المبنیة من هذا النوع من الجزیئات.

Keywords

Main Subjects

1-Meyyappan M. and Srivastava D. (2000). Cabon nanotube, Nasa Ames, Research center, Article. :16-18.
2- Ijima S. (1991). Helical microtubules of graphitic carbon. Nature; 354: 56–58.
3- Zettl A. and Cummings J. (2003). Electro mechanical properties of MWCNT. Department of phys.Univ. Calefornia,Ca.; 94: 720, U.S.A.
4- Xie S, Li W, Pan Z, Chang B, Sun L. (2000). Mechanical and physical properties on carbon nanotube. Journal of Physics and Chemistry of Solids; 61(7): 1153–1158.
5- Krcmar M., Saslow W.M. and Zangwill A. (2003). Electrostatic of Conducting Nanocylinder. J. Appl. phys.; 93: 3495-3500.
6- Ruoff RS, Lorents DC. (1995). Mechanical and thermal-properties of carbon nanotubes. Carbon; 33(7): 925–30.
7- Gulseren O., Yildirim T. and Ciraci S. (2002). Systematic ab initio study of curvature effects in carbon nanotubes. J. Phys. Rev.; B 65: 153405.
8- Iijima S, Brabec C, Maiti A, and Bernholc J. (1996). Structural flexibility of carbon nanotubes. Journal of Chemical Physics; 104(5): 2089–92.
9- Hamada, N., Sawada, S. & Oshiyama, (1992). ANew one-dimensional conductors:  graphitic microtubules. Phys. Rev. Lett.; 68: 1579–1581.
10- Budyka M.F., Zyubina T.S., Ryabenko A.G., Lin S. H. And Mebel A.H. (2005). Bond Lengths and diameters of armchair single wall carbon nanotubes. Chem. Phys. Lett. :407: 266-271.
11- Imtani A.N. and Jinal V.K. (2006). Bond Lengths of Single-Walled Carbon Nanotubes. Dept. of Phys., Panjab University, Changdigrah-160014, India;1-11.
12-a- Brown T.L.L., Bursten B.E., Lemay H.E., (1999). Chemistry: The Central Science, 8th edition, Prentice-Hall. :b- Carroll, D. L. et al. (1997). Electronic structure and localized states at carbon nanotube tips. Phys. Rev. Lett.; 78: 2811–2814.
13- Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M. S. (1992). Electronic structure of graphene tubules based on C60. Phys. Rev. B 46, 1804–1811.
14- Collins PG, Avouris P. (2000). Nanotubes for electronics. Scientific American; 283(6): 62–9.
15- Ramani K.A. and Chadl H. (2006). Infrared spectroscopy of SWCNTs. J. phys.chem. ;B. 110 (25): 12388-12393.
16- U. Kuhlman, H.  Jantoljak, N. Pfander,  P. Bernier, C. Journet and  C. Thomsen, Chem. Phys. Lett. 294, 237-240, (1998).
17- Science direct-surface science Reports; (2005). Electronic and vibrational properties of chemically modified (SWCNTs), Article Tool book, Max-plank-Institutfuer, Germany, vol. 58, Issues 4, p. 1-5, August.
18- Vitali L., Bughard M., Schneider M.A., LeiLiu Y.Wu., Jayanthi C. and Kem K. (2004). Photon Spectromicroscopy of Carbon Nanostructures with Atomic Resolution. Phys. Rev. Lett.; 93:136103.
19- Davidson G. (1990). Introduction to group theory for Chemists. Applied Science Publishers Ltd. London, Elsevier Publishing Comp. Ltd.
20- Andzelm J.W. Labanowski and J.K. (1991). Density Functional Methods in Chemistry, Springer-Verlag, NewYork.
21- Herzberg G. (1971). Molecular Spectra and Molecular Structure, Infrared and Raman spectra of Polyatomic Molecules, Van Nostrand Co, New York.
22- Lewars E. (2003) COMPUTATIONAL CHEMISTRY "Introduction to the Theory and Applications of Molecular and Quantum Mechanics".,Chemistry Department, Trent University, Peterborough, Ontario, Canada.
23- Odom T.W., Huang J., Kim P. and Lieber C.M. (2000). Structure and electronic properties of CNT. J. Phy. Chem.;104: 2794-2809,
24- Zhang, Z. & Lieber, C. M. (1993). Nanotube structure and electronic properties probed by STM. Appl. Phys.Lett. ;62 :2972–2974.
25- Al-Ani H. N. (2009). Theoretical study of vibration modes for Cyclacene and Collarene molecules. M.Sc. Thesis, College of Science, University of Baghdad.