Document Type : Research Paper

Author

Anbar University - College of Computer

10.37652/juaps.2009.15491

Abstract

he study of energy levels for Harmonic Oscillator a one-dimensional are calculated by
eigenvalues and eigenenergy for Schrodinger equation ( ; , , ) ( ) 0 2
2
= ú
û
ù
êë
é
- +V x g -E x
dx
d
L b l a j for rational potentials
V1(x, N,l, g ) = x2 + lx2N /(1+ gx2 ) and V2 ± (x,μ,I,N,M,g,a) = mx2I  gx2n /(1+ gax2M ) ,using
finit difference . we compare our calculations with those calculated by other techniques for some
values of g, α , the finit difference technique in general yields better accuracy in results. We study
several sets of perturbation parameters (λ, g, α ), state numbers n and different indices of the
perturbation ( I ,N ,M )

Main Subjects

[1] P.M. Mathews and Lats shmanan Dep. Of Theoretical Phy. Uni. Of Madrus Jurnal Arricle.
 [2] G. Auberson, Bore! summability for a nonpolynomial potential, Commun. Math. Phys. 84 (1982) 531
[3] G. Auberson and T. Boissiere, The energy levels of a nonpolynomial oscillator: an analytical and numercal study, Nuovo Cimento B 75 (1983) 105-133.
[4] V. Fack, G. Vanden Berghe and H.E. De Meyer, Some finite difference methods for computing eigenvalues and eigenvectors of special two-point boundary value problems, J. Comput. Appl. Math.  20 (1987) 211-217.
[5] V. Fack and G. Van den Berghe, A finite difference approach for the calculation of perturbed oscillator energies, J. Phys. A: Math. Gen. 18 (1985) 3355-3363.            .
 [6] G.P. Flessas, On the Schrodinger equation for the interaction X2 + AX2/(1 + gx2), Phys. Left. A 83  (1981) 121-122.
 [7] G.P. Flessas, On a field-theoretic non-polynomial interaction, Phys. Lett. A, 100 (1984) 383-386.
 [8] F.Y. Hajj, Eigenvalues of the two-dimensional Schrodinger equation, J. Phys. B: At. Mol. Phys. 15  (1982) 683-692.
 [9] F.Y. Hajj, Solution of the Schrodinger equation in two and three dimensions, J. Phys. B: At Mol. Phys. 18 (1985)1-11.
 [10] CR. Handy, H. Hayest, D.V. Stephens, J. Joshua and S. Summerous, Application of the eigenvalue moment method to important one-dimension quantum systems, J. Phys. A: Math. Gen. 26 (1993) 2635
 [11] R.J.W. Hodgson, High-precision calculation of the eigenvalues for the X2 + h2/(1 + gx2) potential, J.  PhY!i. A: Math.Gen. 21 (1988) 1563-1570.
 [12] R. Kaushal, Small g and large A solution of the Schrodinger equation for the interaction Ax2/(1 + gx2), J. Phys. A: Math. Gen. 12 (1979) L253-L258.
 [13] CS. Lai and H.E. Lin, On the Schrodinger equation for the interaction x2 + h2/(1 + gx2), J. PQy&A:  Math. Gen.15 (1982) 1495-1502.
 [14] A. Mitra, On the interaction of the type h2/1 + gx2, J. Math. Phys. 19 (1978) 2018-2022.
 [15] NAG Fortan User Manual, Mark 8 (Numerical Algorithms Group, Oxford, 1981).
 [16] CD. Papageorgious, A.D. Raptis and T.E. Simos, An Algorithm for the solution of the eigenvalue Schrodinger        equation, J. Comput. Phys. 88 (1990) 477-483.
 [17] CD. Papageorgious, A.D. Raptis and T.E. Simos, A method for computing phase shifts for scattering, J.  Comput.Appl. Math. 29 (1990) 61-67.
 [18] T.E. Simos and A.D. Raptis, Numerov-type methods with minimal phase-lag for the numerical
 integration of the one-dimensional Schrodinger equation, Computing 45 (1990) 175-181.
 [19] M.R.M. Witwit, Finite difference calculations ofeigenvalues for various potentials, J. Phys. A: Math.  Gen. 25 (1992) 503-512.
 [20] M.R.M. Witwit and J.P. Killingbeck, Energy levels of the Schrodinger equation for some rational  potentials using the hypervirial method, Can. J. Phys. 70 (1992) 1261-1266.
[21]H. Jones and B. Schiff, Proc. Soc ( London) A 67 (1995) .