Document Type : Research Paper

Author

DEPT. OF MECHANICAL ENGIN.- COLL. OF ENGIN.AL- ANBAR UNIV

Abstract

Tensile testing of matrix and four different fabric polyamide composites was performed at various loading rates ranging from (8.16* 10-5 to 11.66 * 10-5 m/sec) using a servohydraulic testing apparatus. Four kinds of reinforcements woven glass fiber (WGF), random glass fiber (RGF), kevler fiber (KF) and carbon fiber (CF), and one kind of viscoelastic matrix, polyester (P). The results showed that the linear strain (،ـ 0.5) the three parameter model gives a good agreement with experimental results. The elastic modules of the viscoelastic matrix and composites tend to increase with increase of both strain rate and time. The experimental results were comparison with numerical results for simple study case has shown some agreement, which indicate the effectiveness of the ansys program used.

Keywords

[1] H. J. S. and  B. E. J. (1998). “Prediction of Creep Properties of Laminated Composites from Matrix Creep Data”. J. of Reinforced Plastics and Composites. 17(4): 361-378.
[2] K. K., H. S. and T. N. (1982). “Proc. 4th Int. Conf. On Composite Materials”. ICCMIV, Eds T.Hayashi et al., Tokyo, 829-836.
[3] E. H. L. (1955). “Stress Analysis of Viscoelastic Bodies”. Quart. Appl. Math. 13, 183-190.
[4] R. A. S. (1962). “Approximate Methods of Transform Inversion for Viscoelastic Stress Analysis”. Proc. 4th U.S. Nat. Cong. Appl. Mech. 2, 1075-1085.
[5] H. H. H. and R. G. R. (1961). “An Extension of Alfreys Analogy to Thermal Stress Problems in Temperature Dependent Linear Viscoelastic Media”. J. Appl. Phys. Sci. 9, 152-164.
[6] O. C. Z., M. W. and I. P. K. (1963). “A Numerical Method of Viscoelastic Analysis”. Int. J. Mech. Sci. 10, 807-827.
[7] W. C. C. (1972). “Viscoelastic Stress Analysis”. Int. J. Num. Meth. Engng. 4, 357-366
[8] J. L. W. (1968). “Finite Elements in Linear Viscoelasticity”. Proc. 2nd Conf. Matrix. Meth. Struct. Mech. AFFDLTR-150. 489-516.
[9] S. Y. (1982). “Three Dimensional Thermoviscoelastic Analysis of Rocket Grains Using 3-D Quadratic Isoparametric Solid Finite Element”. Proc. Workshop on Structural Integrity of Large Solid Propellant Grains. shar Center, ISRO, India, Paper-2-.
 [10] H.  E. J. (1977). “Mechanical of Materials”. 1st edition, pergaman press, vol. (2).
 [11] L. F. J. (1977). “Non-Linear Viscoelastic Solids”. Johnwiely & Sonsinc, New York.
[12] H. I. H. (1985). “Viscoelasticity”. In cyclopedia of polymers & Engineering, vol. (17), (608-609).
[13] A. H. (1974). “Buckling Behavior of Imperfect Elastic & Linearly Viscoelastic Structures”. Inc. J. Solids & Struct. vol. (74), No. (10), (755-784).
[14] H. S. J. (1985). “Mechanics Of Materials”. 2nd edition pergaman.
[15] Ch. R. M. “Theory of Viscoelasticity”, 2nd edition.
[16] W. M. L. (1964). “Structural Analysis of Viscoelastic Materials”, ALAA J. Vol. (2).. NO. (5), May, (785-808).
[17] L. R. H. (1965). “Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem”. AIAA. J. 3, 1896-1900.
[18] I. M. S. (1970). “Incremental Numerical Solution of a Simple Deformation Problem in Soil Mechanics”. Geotechnique 20. 357-372.
[19] Y. H.” Finite Element Analysis of Non-Linear Soil Media”. Application of Finite Elements in Civil Engineering. Pp. 663-690. Vanderbilt University (1969).
[20] T. I. and T.-W. C. (1982). J. Comp. Mater., 17, 399-413.