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Introduction: 

 The concept of  "Intuitionistic fuzzy sets" was 

introduced by Atanassov in 1983[1] (IFS for short) , 

on the other hand Coker[4] introduced the notions of 

intuituinistic fuzzy First , we present the fundamental 

definitions.topological spaces . 

 In this paper , we introduced the concept of 

regular generalized T1 , locally regular generalized T2 

separation axioms  

Preliminaries:  

 First , we present the fundamental definitions. 

in intuitionsitic fuzzy topological spaces .We give 

some characterizations and basic properties for these 

concept . 

Definitions 2.1[1]. 

Let X be anon empty fixed set-.An intuitionistic fuzzy 

set ( IFS , for short)A is an object having the form A= 

< x  , A1 , A2 > , which A1 and A2 are subset of X 

and satisfying the following 
=

21
AA

. 

Definitions : 2.2[4]. 

An intuitionstic fuzzy topology ( IFT. For short ) on 

anonempty set X is afamily T containing 

andXx = ,,
~

  
,,

~
XxX =

> and 

closed under finite intersection and arbitrary union. 

 In this case the pair ( X , T ) is called an 

intuitionistic fuzzy topological spaces (IFTS, for short) 

and each IFS in T is known as an intuitionstic fuzzy 

open set ( IFOS , for short ) in X .  
 

* Corresponding author at: Tikrit University  -  College of 
Education, Iraq.E-mail address:  

 

The complement A of an IFOS A in an IFTS 

(X , T) is called an intuitionistic fuzzy closed set 

(IFCS , for short ) , in X. 

Definition : 2.3[4]  

let X be anon empty set and let the IFS's A and B be in 

the form A=< x  , A1 , A 2 > , B = < x  , B1 , B2 > 

and let { Ai : i I } bean arbitrary family of IFS's in X 

.Then  

i.   A = B A1  B1 ^ A2  B2  ; 

ii.  A  B A  B   ^  B  A   ; 

iii.  A  = < x  , A2 , A1 > 

iv.  Ai = < x  , A1 , A2 > ; Ai = < 

x  , A2 , A2  >. 

 

Definition : 2.4[4]  

An intuitionstic fuzzy point in X ( IP for short ) is 

defined by 
= cppxp }{},{,~

and the IS 

= cpxp }{,,
~~  in called avanishing intuitionstic 

point (VIP for short ) in X. 

 

Definition : 2.5[1]  

Let A be an IFS , then the interior and closure of an 

IF'S A is defind by ;  

Int  

    

 

 

Definition: 2.6 

 Let ( X , T ) be IFS , Asubset A of (X , T ) is 
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called regular generalized closed set ( RgcS for short ) 

if CLAA , whenever A U and U is regular open. 

 The complement of RgcS in X is called 

regular generalized open set ( RgoS for short ) in X.  

Proposition : 2.7 

 Let ( X , T ) be IFS , A is RgoS in X if and 

only if for each regular closed set F such that F A , 

then F Int A. 

Proof :   

 Suppose that A is RgoS in X , then A is Rgc , 

so for each RoS in X and A
c  U , then CL A

c U. 

Put A
c
 = F and U  Int A , then Int F U .  for 

each FA , F Int A. 

 suppose that A is RgcS in X then A
c
is Rgo , so for 

each F is RCS in X and FA
c
 , F Int A

c
, so put 

CLF = U , then CLA U  

for each AU , CLA U. 

 

Proposition : 2.8 

 If A is Rgc in IS'S (X , T ) and 

CLABA   , then B is Rgc . 

Proof :  

Remark : 2.9 

i)Intersection of any family of RgcS is Rgc. 

ii)Any Union of RgoS is RgoS. 

Proof :    i 

 Let A , B be Two RgcS so for each U ROS in 

X , AU CL AU and for each V ROS , 

BV CLB V  so AB UV , 

CL(AB)   CLACLB UV , So AB is 

RgcS in X. 

ii  is the duol of i  

Remark :2.10 

i)Every open set is RgoS but the converse is not true. 

ii)Every closed set is RgcS , but the converse is not 

true. 

Proof    

 Suppose that A is an open set , then for each 

RCS FA = Int A F Int   A is Rgo and let 

A be closed set , so for each RgoS U , A U. 

CLA=AUA is Rgc. 

Example : 2.11 

 Let X = { 1,2,3} and define T by T = { 

AX ,
~

,
~


} weher A< x  , {1} , {2,3} > so RC(x) = { 

X
~

,
~
 } and Rgo (x) = { BAX ,,

~
,

~
 } where B=< x  

, {1,2} , {3} > , then B is Rgo but not open set and C = 

< x  , {3} , {1,2} > is Rgc but no closed set. 

 

 For each U is ROS and  B U we have prove 

that CL B U. 

Suppose A is Rgc , then for each U is RO in ( X , T ) , 

A U then CL A U , but A B CLA so 

CLB CL(CLA ) = CLA, then CLB CLA U  i.e 

B is RgcS. 

Proposition: 2.12 

 If A is an open and Rgc then A is closed set. 

Proof: 

 Since A is open and Rgc , then U is Rgo in 

X , A U  CLA U replacing U by A , we have 

A A  

then CLA A …….(1) 

but A CLA ……..(2) 

from (1) and (2) we have : 

A=CLA i.e A is closed set. 

3.The separation axiom Regular generalized 

T1:  

 In this section we introduce RGT separation 

axiom and study the basic properties and give this 

generalization with some details and conter examples. 

Definition: 3.1 

 Let (X , T ) be an ITS, (X,T) is said to be : - 

a)RGT1 (i) if for each x ,,
y yxX  ,  there exists 

U,V where U,V are Rgo  (X) s.t 

VxVyUx  ~,~,~
, Uy~

  

b)RGT1 (ii) if for each x,y
yxX  ,

, there exists 

U,V where U,V are Rgo (X) s.t 
UyUX 

~~,
~~

 and 

Vy
~~

, Vxx  ~~~
. 

c)RGT1(iii) if for each 
yxXyx  ,,

, there 

exists U,V where U,V are Rgo (X) s.t. 
yUx ~~ 

 

and 
XVy
~~ 

. 

d)RGT1 (iv) if for each yxXyx  ,,, .there exists 

U,V where U,V are Rgo (X) s.t. 
yUx
~~~~ 

and 

xVy
~~~~ 

. 
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e)RGT1(V) if for each 
yxXyx  ,,

, there exists 

U,V where U,V are Rgo(X) s.t 
Uy ~

and Vx~
. 

 

f)RGT1 (vi) if for each yxXyx  ,, there exists 

U,V where U,V are Rgo (X) s.t 
Uy 

~~
and Vx 

~~
. 

g)RGT1(vii) if for each xXx ~, is Rgc(X). 

h) RGT1(viii) if for each xXx
~~, is Rgc(X). 

Theorem :3.2 

 Let (X , T ) be an ITS , then the following 

implication are valied  

                               RGT1(v)       RGT1(vi) 

 
RGT1(i)                RGT1(i)+ RGT1(ii)       RGT1(ii) 

 
RGT1(viii)        RGT1(iii)  '' 

T1(iv) RGT1(viii) 

 

Proof: RGT1(vi)    RGT1(v) 

 

 

Suppose yxXyx  ,, so there exists 

U=< x ,u1,u2> and V= <y,v1,v2> are Rgo(X) s.t 

Uxxxx c = }{},{,~
 and 

Uyyyy c = }{},{,~
and 

VxVy  ~,~
, this 

implies Vx~
 and 

Uy ~
there for RGT1(v) holds . 

 RGT1(ii)  RGT1(Vi) 

 Let yxXyx  ,,  , since RGT1(ii) hold so 

there exists U,V are Rgo(X) s.t 
UyUx 

~~,
~~

 and 

Vy 
~~

where  

= cyyy }{,,
~~   and  

  

== cc xxxxxxx }{},{,~}{,,
~~  V, from this 

we get Vx 
~~

and Uy
~~

there for RGT1(vi) hold. 

RGT1(V) hold. 

RGT1(i) + RGT1(ii)RGT1(iii) 

Let x ,yX , x  y since RGT1(i)+RGT1(ii) holds so 

there exists 
= 21,, UUxU

and V=<y,V1,V2> are 

Rgo(X) s.t Ux ~
and 

xVyUy ,~,~ 
and 

VxxVy  ~~~,
~~

. 

 First we have to prove 
yUx ~~ 

and 

xVy ~~ 
we have to prove that U

y~
and 

V x~ take U and 
= }{},{,~ yyyy

, since 

Uy~
so Uy , there for 

}{1 yU  c
and 2}{ Uy 

, 

this RGT1(i) + RGT1(ii)RGT1(i)  and 

RGT1(i) + RGT1(ii)RGT1(ii)  is direct 

RGT1(vi)   RGT1(v)  

 Suppose there exists U,VRgo(X) s.t 

UyVx  ~,~
and  VxVy  ~,~

 this implies that 

Vx ~
and  Uy~

there for implies that 
yU ~

. 

 In similar way we can prove xV ~ Hence 

RGT1(iii) halds 

RGT1(iii) RGT1(i) + RGT1(ii) 

 We have to prove RGT1(iii) RGT1(i) and 

RGT1(iii) RGT1(ii) we prove that RGT1(iii) 

RGT1(i) , let x  , 
y

 , x  y
.Since RGT1(iii) hold 

so there exists U,V R.g.o(x)s.t 
yUx ~~ 

 and 

xVy ~~ 
.Now 

Ux ~
 ,  y~ U,and y~   V, x~ V 

and y~ U ,so x~ U and y~ V.Since y~ V x~  

so RGT1 (i) holds. 

 We conuse similar argument to prove that 

RGT1(iii) RGT1(ii). RGT1(iii) RGT1(vii). 

Suppose RGT1(iii) hold , take Xyx , s.t 

RGT1(iii) RGT1(i) + RGT1(ii) 

 We have to prove RGT1(iii) RGT1(i) and 

RGT1(iii) RGT1(ii) we prove that RGT1(iii) 

RGT1(i) , let x  , 
y

 , x  y
.Since RGT1(iii) hold 
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so there exists U,V R.g.o(x)s.t 
yUx ~~ 

 and 

xVy ~~ 
.Now 

Ux ~
 ,  y~ U,and y~   V, x~ V 

and y~ U ,so x~ U and y~ V.Since y~ V x~  

so RGT1 (i) holds. 

 We conuse similar argument to prove that 

RGT1(iii) RGT1(ii). RGT1(iii) RGT1(vii). 

Suppose RGT1(iii) hold , take Xyx , s.t 

 
yx 

there exists U,V R.g.o(x) and 

yUx ~~ 
and 

xVy ~~ 
.since Ux ~

so Ux  

we have to prove that  x~ is R.g.c , that is to prove is 

R.g.o (X) for if )}(.,~:{~ XORVVyVUx = ,that 

is x~ is union of ROS so it is R.g.o therefore x~  is 

R.g.c . 

RGT1(iv)   RGT1(viii). 

Suppose that RGT1(iv) hold and let `Xx so for each 

Xy  s.t 
yx 

there exists )(.., XogRVU   s.t 

Uy
~~

and Vx 
~~

. 

 We have to prove that x~  is R.g.c that is we 

have to prove that x
~~

 is R.g,o(X) . 

RGT1(iii) RGT1(i) RGT1(ii). 

 We have to prove RGT1(iii) RGT1(i) and 

RGT1(iii) RGT1(ii), First we prove that RGT1(iii) 

RGT1(i), let Xyx , ,
yx 

.Since RGT1(iii) hold 

so there exists R.g.o(X) s.t 
yUx ~~ 

and 

xVy ~~ 
.now Vx ~

. Uy~
 and Uy , this 

implies that Ux ~
and Uy~

, so in the same way 

we get that Uy  , Vx ~
for RGT1(i) holds . 

 We can use similar arqument to prove that 

RGT1(iii) RGT1(ii) , RGT1(iii) RGT1(vii) 

suppose RGT1(iii) hold let Xx  so for each y in X 

s.t 
yx

 there exists )(.., XogRVU   s.t 

y~Ux 
and 

x~Vy~ 
.Since Ux ~

 so 

Ux   we have to prove that x~ is R.g.o . 

 That is to prove that x~ is R.g.o(X) for if 

)}(..,~:{~ XogRVVyVUx =
.that is x~ is union of 

R.g.o set so it is R.g.o therefor x~  is R.g.C. RGT1(iv) 

RGT1(viii) 

 Suppose that RGT1(iv) hold and let Xx so 

for each Xy  s.t 
yx 

there exists U,V R.g.o(X) 

s.t 
Uy ~

and Vx~
.We have to prove that x~ is R.g.c 

.That is we have to prove that x
~~

is R.g.o(X). 

 Since 
xsoUyUUxxx c ~~,}

~~:{,}{,
~~ == 

 

is aunion of R.g.o'S So is R.g.o therefore x
~~

 is R.g.C. 

 The following implication are proved by 

transitivity. 

RGT1(ii) + RGT1(i)RGT1(vi), 

RGT1(ii) + RGT1(i)RGT1(v)  , 

RGT1(ii) + RGT1(i)RGT1(iv) and  

RGT1(ii) + RGT1(i)RGT1(viii)   

 The converse of theorem 3.2 are not true in 

general. The following examples show these cases. 

Example : 3.3 

1-Let X ={a,b} and define T={
~

, X
~

,A,B } , where 

A=< ,x ,{a}> , B = < x  , , > , so R.C(X) ( where 

oBB = ) = { BX ,
~

,
~
 } then R.g.o(X) = T , so the 

IT(X,T) satisfies RGT1(V) , but dose not satisfy 

RGT1(i). 

2-let X={a,b} and define T={ CBAX ,,,
~

,
~
 }, where 

A< x ,{a},> ,B=< x ,{b} > ,C = < x ,  , > , so 

R.C(X)={ 
~

, X
~

,c}and R.g.O(X)=T , so the  IT(X,T) 

satisfies RGT1(vi) , but not satisfies RGT1(ii). 

3-Take X={a,b} and define T={
~

, X
~

,A,B,C} , where 

A=< x ,  ,{a}> , B=< x ,  , >, C=< x ,{a} ,  > , so 

R.C(X)=T and R.g.o(X)=T {E,G} , where 

E=< x ,{b}, > , G=< x ,{b},{a}> , so the IT(X,T) 

satisfies RGT1(viii) but not satisfies RGT1(iv) and 

satisfies RGT1 (vii) but not satisfies RGT1(iii). 

4-Take X={a,b} and defined T={
~

, X
~

,A,B,C} , 

where A=< x ,  , > , B=< x ,  ,{b}> , C=< x ,  , > 

so R.c(X) = {
~

, X
~

,C} and R.g.O (X) = T , so the 

IT(X.T) satisfies RGT1(iv) , but not satisfies 

RGT1(ii). 

5-Let X={a,b} and define T={
~

, X
~

,A,B,C} where 

A=< x ,{a},{b}> , B=< x ,{b} >, C=< x ,  ,{b}> , so 

R.C(X)={ 
~

, X
~

,B,C} and R.g.O(X)={ 
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~

, X
~

,A,B,C,E} where E=< x ,{a}, > then the IT 

(X,T) satisfies RGT1(i) but not satisfies RGT1(ii). 

 

4.The Separation axiom Regular generalized T2: 

  In this section we recall the definition 

of weak forms of the separation axiom namely regular 

generalization T2(ki) (RGT2(k) for short ) , where 

k(i ,ii , iii , iv, v ,vi) in ITS. 

 

Definition : 4.1 

 Let (X,T) be an ITS,(X,T) is said to be : 

a)RGT2(i) if for each yxXyx  ,, , there exists 

)(.., XogRVU  s.t Ux ~
. Vy~

 and =
~

VU . 

b) RGT2(ii) if for each yxXyx  ,, , there exists 

)(.., XogRVU  s.t Ux 
~~

. Vy 
~~

 and 
~

=VU . 

c) RGT2(iii) if for each yxXyx  ,, , there exists 

)(.., XogRVU  s.t Ux ~
. Vy~

 and VU  . 

d) RGT2(iv) if for each yxXyx  ,, , there exists 

)(.., XogRVU  s.t Ux 
~~

. Vy
~~

 and VU  . 

e) RGT2(v) if for each yxXyx  ,, , there exists 

)(.., XogRVU  s.t 
xVyyUx ~~,~~ 

.  and 


~

=VU . 

f) RGT2(vi) if for each yxXyx  ,, , there exists 

)(.., XogRVU  s.t xVyyUx ~~~,~~~  .  and 


~

=VU . 

 The following in the main theorem it gives 

relations of the several kinds of RGT2 separation 

axioms. 

Theorem : 4.2 

 Let (X,T) be an ITS.Then the following 

implications are valied : 

 RGT2(v)  RGT2(vi) 

 

      

 RGT2(i)    RGT2(iii) 

 

    

RGT2(viii)    RGT2(iv)  

 

: RGT2(v)    RGT2(vi) 

 Let (X,T) be an   ITS                     satisfy 

 

Proof 

 RGT2(V) , for if let yxXyx  ,, , there exists 

)(.., XogRVU  s.t Ux ~
. Uy~

 and 


~

=VU .Since Ux ~
and Vy~

, then we can get 

easily that  Ux 
~~

and Vy
~~

, therefore Vx 
~~

and 

Uy
~~

 and 
xVyU ~,~ 

and 
~

=VU .So we get 

that (X,T) is satisfy RGT2(Vi) , RGT2(i)RGT2(ii). 

 Let (X,T) be an ITS satisfy RGT2(i) so take  

yxXyx  ,, , there exists )(.., XogRVU  s.t 

Ux ~
.

Vy~
  and =

~
VU .Since Ux ~

and, 

Vy ~
then we can get easily that  Ux 

~~
and Vy

~~
, and 

=VU .from hypothesis  .Therefore RGT2(ii) 

holds. 

RGT2(i)RGT2(iii). 

Let (X,T) be ITS satisfy RGT2(i) , for if  

yxXyx  ,,  .Since RGT2(i) holds , this implies 

that there exists )(.., XogRVU  s.t Ux ~
. Vy~

 

and =
~

VU .Since Ux ~
and =

~
VU , so 

Vx ~ , this implies that Vx ~
.This prove that for 

every x  in X if Ux ~
 , then Vx ~

i.e VU   

Therefore (X,T) satisfies RGT2(iii) . 

RGT2(iii)RGT2(i) 

Let (X,T)  be an ITS satisfies RGT2(iii) so 

there exists )(.., XogRVU   such that Ux ~
, 

Vy~
 and  VU  .To prove that =

~
VU  .Since 

VU   and Ux ~
so Vx , this implies that 

Vx .Therefore =VU  so (X,T) satisfies 

RGT2(i). 

RGT2(ii)RGT2(iv) 

Since RGT2(ii) hold , so let yxXyx  ,, , 

there exists )(.., XogRVU   s.t Ux 
~~

, Vy
~~  and  

VU  . So VyVx 
~~,

~~
 and =VU  . so 

Vx 
~~

, then Vx 
~~

 and  =
~

VU  , so Ux 
~~

  , 

therefore VU  that is mean RGT2(iv) holds. 

RGT2(vi) RGT2(ii) 

 Let yxXyx  ,,  , there exists 

)(.., XogRVU  since RGT2(vi) holds so  
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yUx ~~~  , xVy ~~~  and 
~

=VU from this we 

directly that there exists )(.., XogRVU  , s.t 

Ux 
~~

, Vy
~~

 and  
~

=VU , therefore RGT2(ii) 

holds. 

RGT2(iV)RGT2(i) is clear  

RGT2(iii)RGT2(iv) 

Let (X,T) be an ITS satisfies RGT2(iii) , to 

Prove that (X,T) satisfies RGT2(iv) , for if 

yxXyx  ,, .Since RGT2(iii) holds , this implies 

that there exists )(.., XogRVU  such that Ux ~
. 

Vy~
 and VU   .so we get directly that Ux ~

, 

Vy
~~

 and  VU  . Therefore  (X,T) satisfies 

RGT2(iv). 

RGT2(v) RGT2(i) 

Let (X,T) be an ITS satisfies RGT2(v) for if 

yxXyx  ,, , so there exists )(.., XogRVU   

such that  yUx ~~~  , 
xVy ~~ 

 and 


~

=VU from this we get directly that  Ux 
~~

, 

Vy
~~

 and 
~

=VU .Therefore (X,T) satisfies 

RGT2(i). 

RGT2(i) RGT2(v) 

Let (X,T) be an ITS satisfies RGT2(i),to prove 

that (X,T) satisfies RGT2(v), for if 

yxXyx  ,, .Since RGT2(i) holds , this implies 

that there exists )(.., XogRVU   such that Ux 
~~

, 

Vy
~~

 and 
~

=VU .we have to prove 
yU ~

and 

xV ~  i.e .U1
cy}{

 and {y}U2 also V1 
y~

 

.Let U=< x ,U1,U2> and 2
~ Uy 

 also 
cxV }{1  and 

2}{ Vx 
 .Frstly it is prove 

yU ~
. Let 

U=< x ,U1,U2> and 
= }{,}{,~ yyxy c

 , let 

Uz ~
this implies that Uz 1 .Since Vy~

 and  


~

=VU  this implies that Uy~
so Vy~

1 , if 

yz ~~ this implies that yz ~~  and so 

}{yz .Therefore 
}{1 yU 

.if  yz ~~  this implies 

that }{yz  we get that a contradiction (because 

}{yz  ), hence yz ~~  .Therefore 
}{1 yU 

. Now 

we have to prove Uy }{ 2 . Let }{yy  this 

implies that }{yy  , so Uy 1 hence 2Vy
.So 

Uy }{ 2 . 

In a simlier way , we can prove 

xV ~ .Therefore (x,T) satisfies RGT2(V). 

RGT2(ii) RGT2(iv) 

Let (X,T) be an ITS satisfies RGT2(ii) this 

implies that there exists U,V  R.g.o(x).  

 Such that  yUx ~~~  , xVy ~~~  and 


~

=VU  we have to prove that VU   and xV
~~  

i.e. V1 
y~

 and U 2 also 
}{1 xV  c

and 

U .Firstly it is prove 
yU
~~

.Let U=<x,U1,U2> 

and 
= ,}{,

~~ cyxy
.Since U 2 we have to 

prove }{yU  c
. 

 Let Uz ~
 this implies that Uz 2 , so 

1Uz
 (

= 21 UU
).Since Uy~

 ( Vy~
 and 

U V) , this implies that yz
~~~~  .Hence 

yz
~~~~

so 

}{yz c
 .Therefore 

}{1 yU  c
 . 

 In a similar way , we can prove xV
~~  .So 

(x,T) satisfies RGT2(iv). 

 The following implications followed from 

theorem 2.2 by transitivity. 

RGT2(v)RGT2(ii) , RGT2(i)RGT2(iv) 

RGT2(v)RGT2(vi) , 

RGT2(vi)RGT2(iv) 

RGT2(v)RGT2(iii)  

In general the converse of the diagram appears 

in the theorem 4.2 is not true in general .The following 

counter example shows the cases. 

 

Example: 4.3 

(1)Let X={a,b} and T={ CBAX ,,,
~

,
~
 } , where 

A=< x , ,{a}> , B=< x , ,  > so Rc(X)={ CX ,
~

,
~
 } 

and R.g.o.(X)=T , so the IT(X,T) satisfies RGT2(iv) , 

but not satisfies RGT2(ii). 

(2)Let X={a,b,c} and define 

T={ CBAX ,,,
~

,
~
 ,D,E,F,G,H} where 

A=< x ,{a,b},{c}> , B=< x ,{a},{b,c}>, 
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C=< x ,{b},{a,c}>, D=< x ,{c},{a}> , E=< x ,{a,b},    

> , F=< x ,{b,c, > , H=< x ,  ,>. 

RC(X) = {
~

, X
~

,E,H} and R.g.o(X)=TU{J,N,O,Q,V} 

where J=< x ,{b,c},{a} , N=< x ,  ,c> , 

O=< x ,{b},{a}> , Q=< x ,{b},> , V=< x ,  ,> , so 

that IT(X) satifisfies RGT2(i) , but not satisfies 

RGT2(vi) and not satisfies RGT2(v)  

 

 

 

Corollary : 4.4 

 Let(X,T) be ITS , then if (X,T) satisfies 

RGT2(k) , then it satisfies RGT1(k) , where 

).,,,,,( viviviiiiiik  
 

Remark: 4.5 

 The converse of corollary 4.4 is not true in 

general .The following examples in example 3.3 

showes these cases. 

 

References : 

[1] Atanassov,K. and Stoeva , S.(1983) " Intuitionistic 

fuzzy sets in : polish symp on interval and fuzzy 

Mathematics" Poznan pp.23-26. 

[2] Bayhan , S, and Coker , D.(2001) " On fuzzy 

separation axioms in Intuitionistia fuzzy 

Topological Spaces" Internet pp.621-630. 

[3] Bayhan , S, and Coker , D.(2003) " On T1 and T2 

separation axioms in Intuitionistia fuzzy 

topological spaces" J.Fuzzy Mathematics 11, No.3 , 

pp. 581-592. 

[4] Coker , D.(1996) " Anote on Intuitionistia sets and 

Intuitionistia points " Turkish J. Math, 20 , No.3 , 

pp. 343-351. 
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 الخلاصة
طدددتع يف جددد  ب ضددد  لدددعفف لدد ضهمتة المندددة ال ف  دددا ال تبو دددا ادددس المددددتعاة الب  ل بمدددا ال   دددما    ا دددا  فدددف الهدد م  ددد  لددد ا الع ددد  لددد  ا 

 ة  يف م هت  ع الا ثلا الب ضم ما.الفلاقتة البس ي بط ل ضهمتة المنة ال ف  ا ال تبو ا اضتاا الى   ا ا  فف الخ اص  الفلاقت

 


