طريقة لحساب الحدود التقريبية المثلى للطبقات باستخدام توزيع نيومان

عثمان كامل أحمد

جامعة الاتبار. كلية التربية للعلوم الصرفة

الخلاصة:

تم في هذا البحث دراسة طريقة تقريبية جديدة هي (cum.f\(\sigma^{(cum.f)}\)) والتي تستخدم في حساب الحدود التقريبية للمجتمع باستخدام توزيع نيومان في حالة دراسة المجتمعات ذات العينات الغير متجانسة ومقارنتها مع أكما الطريقة التقريبية السابقة وهي طريقة (cum.f\(\sigma\)). وتلتقي هذه الدراسة إن الطريقة الجديدة تكمل أكما من الطريقة التقليدية في حالة التوزيع المنتظم، ومجموع قيم \(d\) في حالة التوزيع الطبيعي فإن كفاءة الطريقة الجديدة على الطريقة التقليدية تعتمد على قيمة في حالة كانت (2877.208) فإن الطريقة التقليدية تكون أكما من الطريقة الجديدة، إذا كانت (2877.208) فإن الطريقة الجديدة تكون أكما من الطريقة التقليدية. أما في حالة التوزيع الأسمر، لم تكن الطريقة الجديدة هذه الأكما دائما، وомуضت الطريقة الجديدة هذا النوع من معالجة البيانات في حالة التوزيع الأسمر. نتائج البحث دراسة طريقة تقريبية جديدة وهي طريقة الالتاء الفيسبوك (Stratified Simple Random Sampling) والتي

المواد البحثية:

تاريخ القبول: 20/10/2006
تاريخ النشر: 23/12/2010
تاريخ النشر: 2010/12/30
تاريخ النشر: 14/6/2012
DOI: 10.37652/juaps.2010.15596

الكلمات المفتاحية:

حساب، حدود تقريبية، طريقة نيومان، توزيع نيومان

المقدمة:

بعد موضوع العينات الذي هو أحد فروع علم الإحصاء من الموضوعات المهمة في البحث العلمي حيث تستخدم البحوث الإيجابية من حيث درجة الشمول إلى بحوث بصورة الحصر الشامل وأخرى بصورة الحصر الجزم. حيث تستخدم الطريقة عينات في حالة كون الدراسة مطلقة على بعض المعلومات عن المجتمع تساعد على اختيار الفئة المناسبة التي تمت تلك المجتمع تمثل جيدا، أو في حالة تأثر أو استحالة تقبل ظروف الإحصائية من حيث درجة الشمول إلى بحوث بصورة الحصر الشامل وأخرى بصورة الحصر الجزم. حيث تستخدم الطريقة عينات في حالة تأثر أو استحالة تقبل ظروف الإحصائية من حيث درجة الشمول إلى بحوث بصورة الحصر الشامل وأخرى بصورة الحصر الجزم. حيث تستخدم الطريقة عينات في حالة تأثر أو استحالة تقبل ظروف الإحصائية من حيث درجة الشمول إلى بحوث بصورة الحصر الشامل وأخرى بصورة الحصر الجزم. حيث تستخدم الطريقة عينات في حالة تأثر أو استحالة تقبل ظروف الإحصائية من حيث درجة الشمول إلى بحوث بصورة الحصر الشامل وأخرى بصورة الحصر الجزم. حيث تستخدم الطريقة عينات في حالة تأثر أو استحالة تقبل ظروف الإحصائية من حيث درجة الشمول إلى بحوث بصورة الحصر الشامل وأخرى بصورة الحصر الجزم. حيث تستخدم الطريقة عينات في حالة تأثر أو استحالة تقبل ظروف الإحصائية من حيث درجة الشمول إلى بحوث بصورة الحصر الشامل وأخرى بصورة الحصر الجزم. حيث تستخدم الطريقة عينات في حالة تأثر أو استحالة تقبل ظروف الإحصائية من حيث درجة الشمول إلى بحوث بصورة الحصر الشامل وأخرى بصورة الحصر الجزم. حيث تستخدم الطريقة عينات في حالة تأثر أو استحالة تقبل ظروف الإحصائية من حيث درجة الشمول إلى بحوث بصورة الحctrl.
وفى عام (1996) قام القصاب وأزهر باقتراح طريقتين
تقريرتين في حالة توزيع نيومان هما cum.f², cum.f⁴ ووجدتا
التباين الوسط الحسابي الطبقي للطريقة (2) هو:
\[v_3(\bar{Y}_n) = \frac{M^4(y)}{12nL} \]
حيث إن:
\[M(y) = \int_{-\infty}^{\infty} f(y) dy \]
\[v_5(\bar{Y}_n) = \frac{C^2(y)}{12nL^2} \]
حيث إن:
\[C(y) = \int_{-\infty}^{\infty} f(y) y^2 dy \]
ولوحظ من ذلك إن طريقة التقريرية الموجودة لأنها تعطي أقل قيمة لتباين الوسط الحسابي الطبقي.: (2) \(v(\bar{Y}_n) \)
أما في هذا البحث فقد تم اقتراح طريقة جديدة هي cum.f² ونستقبل هذه الطريقة بناءً على الدراسة هذه الطريقة. ومن أجل إنتاج هذه الطريقة ومقارنتها مع أفضل الطرق السابقة فهي وذلك باستخدام التوزيعات الاحتمالية (التوزيع المنظم, التوزيع الطبيعي, التوزيع الآسي) نفرض إن:
\[D(y) = \int_{-\infty}^{\infty} f_2^2(y) dy \]
وتباين محدد 2σ² وتباين f(y) في الفترة (a b) حيث إن f (y) خارج هذه الفترة تكون مساوية للصفر مع خطا يمكن إظهاره ونحدد الطبقات للفترة [a, b]
\[\mu_h = \frac{1}{2} \int_{y_{n-1}}^{y_n} yf(y) dy \]
\[\sigma_h^2 = \frac{1}{2} \int_{y_{n-1}}^{y_n} y^2 f(y) dy - \mu_h^2 \]
ويفضل أن تباين الطابة هو وحسب من المعادلة:
\[\sigma_h = \frac{1}{2} \int_{y_{n-1}}^{y_n} f(y) dy \]
وحن تابي الطابة هو وحسب من المعادلة:
\[\mu_h = \frac{1}{2} \int_{y_{n-1}}^{y_n} yf(y) dy \]
وينبغي أن يبدأ مجموعات أعلاه انتهت مباشرة لها عبر σ_h, μ_h
من ذلك لأن \bar{Y}_n تمتد في حسابها على σ_h, μ_h
والمثل لا يمكن الحصول على \bar{Y}_n وبالتالي لا يمكن الحصول على حل مباشرة لجميع المعادلات أعلاه باستخدام الطرق التكرارية. يمكن الحصول على حل للمعادلات أعلاه وتكون النتائج أفضل من كل الطرق التقريرية لكنها تكون معددة بعض الشيء (المحذفي) (1). أما بالنسبة إلى الطرق التكرارية فهي تعطي حلول تقريرية وذل هذه الحلول المقررة تعطي صعوبة تقريرية إلى $\bar{Y}_n (\bar{Y}_n)$ حيث إن أول طريقة تقريرية لإيجاد الحدود الطبقية المثلى في حالة التوزيع النسبي هي Dolenius & Hadges (1959, 1967) حيث تم تجزئة تدريج (4) لاتباعا على توزيع نيومان حيث افترض إن:
\[K(y) = f_2^2(y) dy \]
ووجد بأن التباين الأصل لهذه الطريقة هو
\[v(\bar{Y}_n) = \frac{K(y)}{12nL^2} \]
وهي:

\[
\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}
\]

وهي

\[
\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}
\]

ولكي نصل إلى النتائج والمناقشة، نعتمد على التوزيعات

الاحتمالية (التوزيع المنظم، التوزيع الطبيعي، التوزيع الآسي) ، ومقارنة

جداول، وطريقة كايبدي، وطريقة كايبدي مع، وطريقة كايبدي مع الطريقة

العديد من طرق المقارنة، وقيم مختلفة لـ \(n \) والقيم المتبقية لـ \(L \) ونبيضة

النظام.

وهي:

\[
\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}
\]

أي:

\[
\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}
\]

وهي:

\[
\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}
\]

ولكي نصل إلى النتائج والمناقشة، نعتمد على التوزيعات

الاحتمالية (التوزيع المنظم، التوزيع الطبيعي، التوزيع الآسي) ، ومقارنة

جداول، وطريقة كايبدي، وطريقة كايبدي مع، وطريقة كايبدي مع الطريقة

العديد من طرق المقارنة، وقيم مختلفة لـ \(n \) والقيم المتبقية لـ \(L \) ونبيضة

النظام.

وهي:

\[
\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}
\]

أي:

\[
\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}
\]

وهي:

\[
\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}
\]

ولكي نصل إلى النتائج والمناقشة، نعتمد على التوزيعات

الاحتمالية (التوزيع المنظم، التوزيع الطبيعي، التوزيع الآسي) ، ومقارنة

جداول، وطريقة كايبدي، وطريقة كايبدي مع، وطريقة كايبدي مع الطريقة

العديد من طرق المقارنة، وقيم مختلفة لـ \(n \) والقيم المتبقية لـ \(L \) ونبيضة

النظام.

وهي:

\[
\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}
\]

أي:

\[
\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}
\]

وهي:

\[
\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}
\]

ولكي نصل إلى النتائج والمناقشة، نعتمد على التوزيعات

الاحتمالية (التوزيع المنظم، التوزيع طبيعي، التوزيع الآسي) ، ومقارنة

جداول، وطريقة كايبدي، وطريقة كايبدي مع، وطريقة كايبدي مع الطريقة

العديد من طرق المقارنة، وقيم مختلفة لـ \(n \) والقيم المتبقية لـ \(L \) ونبيضة

النظام.

وهي:

\[
\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}
\]

أي:

\[
\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}
\]

وهي:

\[
\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}
\]
بعد الكثافة

(Uniform Distribution):

\[f(y) = \begin{cases}
\frac{1}{2c} & \text{if } c < y < c + d \\
0 & \text{otherwise}
\end{cases} \]

الاحتمالات:

\[f(y) = \begin{cases}
\frac{1}{2c} & \text{if } c < y < c + d \\
0 & \text{otherwise}
\end{cases} \]

والتعميم عن قيم مختلفة

(2) التوزيع المتقطع في الجدول رقم (1):

\[V_5 = \text{nv}_\text{Ne(y)}(\text{Y}_g) \]

مجال الجدول رقم (1):

\[d = \text{nv}_\text{Ne(y)}(\text{Y}_g) \]

بالطريقة الجديدة يكون دائما اقل من

(1.056490)

بالمقابل، كما كان الفرق بين المتبقيات كبير. وهذا يدل على أن الطريق الجديدة في

أفاد من الطريقة السابقة باستخدام التوزيع المتقطع

جدول رقم (1)

<table>
<thead>
<tr>
<th>d</th>
<th>V_4</th>
<th>V_5</th>
<th>V_4</th>
<th>V_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1</td>
<td>0.8023</td>
<td>0.8026</td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>2</td>
<td>0.20026</td>
<td>0.20062</td>
<td>2</td>
</tr>
<tr>
<td>0.3</td>
<td>3</td>
<td>0.08919</td>
<td>0.09161</td>
<td>3</td>
</tr>
<tr>
<td>0.4</td>
<td>4</td>
<td>0.05042</td>
<td>0.05159</td>
<td>4</td>
</tr>
<tr>
<td>0.5</td>
<td>5</td>
<td>0.03211</td>
<td>0.03330</td>
<td>5</td>
</tr>
<tr>
<td>0.6</td>
<td>6</td>
<td>0.02223</td>
<td>0.02320</td>
<td>6</td>
</tr>
<tr>
<td>0.7</td>
<td>7</td>
<td>0.0164</td>
<td>0.01698</td>
<td>7</td>
</tr>
<tr>
<td>0.8</td>
<td>8</td>
<td>0.01259</td>
<td>0.01291</td>
<td>8</td>
</tr>
<tr>
<td>0.9</td>
<td>9</td>
<td>0.00999</td>
<td>0.01012</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0.0088</td>
<td>0.00903</td>
<td>10</td>
</tr>
</tbody>
</table>

والتعميم عن قيم مختلفة

جدول رقم (2)

<table>
<thead>
<tr>
<th>d</th>
<th>L</th>
<th>V_4</th>
<th>V_5</th>
<th>V_4</th>
<th>V_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1</td>
<td>0.15274</td>
<td>0.19379</td>
<td>2.1</td>
<td>0.2154</td>
</tr>
<tr>
<td>0.2</td>
<td>2</td>
<td>0.03819</td>
<td>0.02345</td>
<td>2.2</td>
<td>0.05039</td>
</tr>
<tr>
<td>0.3</td>
<td>3</td>
<td>0.01697</td>
<td>0.01042</td>
<td>2.3</td>
<td>0.02240</td>
</tr>
<tr>
<td>0.4</td>
<td>4</td>
<td>0.00955</td>
<td>0.00586</td>
<td>2.4</td>
<td>0.01260</td>
</tr>
<tr>
<td>0.5</td>
<td>5</td>
<td>0.00611</td>
<td>0.00375</td>
<td>2.5</td>
<td>0.00806</td>
</tr>
<tr>
<td>0.6</td>
<td>6</td>
<td>0.00424</td>
<td>0.00261</td>
<td>2.6</td>
<td>0.00506</td>
</tr>
<tr>
<td>0.7</td>
<td>7</td>
<td>0.00312</td>
<td>0.00191</td>
<td>2.7</td>
<td>0.00411</td>
</tr>
<tr>
<td>0.8</td>
<td>8</td>
<td>0.00239</td>
<td>0.00147</td>
<td>2.8</td>
<td>0.00315</td>
</tr>
<tr>
<td>0.9</td>
<td>9</td>
<td>0.00188</td>
<td>0.00136</td>
<td>2.9</td>
<td>0.00249</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.0011</td>
<td>0.00009</td>
<td>3</td>
<td>0.00200</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>53</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

جاء في جدول التوزيع المتقطع

(Normal Distribution)

دالة الكثافة الاحتمالية لهذا التوزيع هي:

\[f(y) = \begin{cases}
\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y-\mu)^2}{2\sigma^2}} & \text{if } -\infty < y < \infty, \sigma^2 > 0, -\infty < \mu < \infty \\
0 & \text{otherwise}
\end{cases} \]
نلاحظ من الجدول أعلاه أنه كلما كانت قيمة

\(\lambda = 3.042 \) فان

\(v_4 = \text{nv}_{\text{Ney}}(Y_{sl}) \) قيمة

صحيحة أقل من قيمة

\(v_5 = \text{nv}_{\text{Ney}}(Y_{sl}) \) خاصة بالطريقة الجديدة

عندما تكون (\(\sigma < 0.2287 \)) ولذلك تكون الطريقة السابقة أفذا من الطريقة الجديدة ضمن هذه الفترة عندما تكون (\(\sigma = 0.2287 \)) تصبح قيمة

\(v_4 = \text{nv}_{\text{Ney}}(Y_{sl}) \) سماوية إلى قيمة

\(v_5 = \text{nv}_{\text{Ney}}(Y_{sl}) \) ولذلك تكون الطريقة سماوية من الفكاءة.

عندما تكون (\(\sigma > 0.2287 \)) فان قيمة

\(v_5 = \text{nv}_{\text{Ney}}(Y_{sl}) \) أقل من قيمة

\(v_4 = \text{nv}_{\text{Ney}}(Y_{sl}) \) السابقة.

3- التوزيع الأساسي (Exponential Distribution) الاحتمالية لهذا التوزيع هي

\[f(Y) = \begin{cases} \lambda e^{-\lambda y}, & y > 0, \lambda > 0 \\ 0, & \text{otherwise} \end{cases} \]

لحساب التوزيع الأساسي نحصل على

\[D(Y) = \int f(y) dy = \int \lambda e^{-\lambda y} dy \]

\[= \frac{-1}{\lambda} e^{-\lambda y} \]

\[= - \frac{1}{\lambda} e^{-\lambda y} \rightarrow 25 \lambda y \rightarrow du = \frac{25}{26} \lambda \]

\[\therefore D(Y) = \frac{1.084999}{\lambda} \pi \frac{\lambda}{12} \]

وبالتوالي القيم مختلفة لكل (\(\lambda > 0 \)) في المعايلة أعلاه نحصل على النتائج الموضحة في الجدول رقم (3).

جدول رقم (3)
METHOD OF APPROXIMATELY OPTIMAL STRATIFICATION USING NEYMAN ALLOCATION

ISAM K. AHMED

E: isamkml@yahoo.com

ABSTRACT:

In this paper, I have studied a new (which cum.f approximate method) is used for calculating the approximate normal boundaries by using the Neyman allocation in case of studying classes that have heterogeneous samples and compared it with the most efficient approximate method, which is (cum.f^2). It turned out through this study that the new method is more efficient than the old method in case of uniform distribution and for all values of d, while in case of normal distribution, the efficiency of the new method on the old one depends on value (σ), if it was (σ < 0.2287) the old method would be more efficient than the new one, while if it was (σ = 0.2287), the two methods would be at the same level of efficiency, while if it was (σ > 0.2287), the new method would be more efficient than the old one. As for the exponential distribution, the new method would not always be efficient but during specific moment depending on value (λ), while if it was (λ < 3.042), the new method would be more efficient than the old one, if it was (λ = 3.42), the two methods would be at the same level of efficiency, while if it was (λ > 3.042) the old method would be more efficient than the new one.