LINEAR CODE THROUGH POLYNOMIAL MODULO Z ${ }^{n}$

MAKARIM ABDULWAHIDE

DEPT. OF INFORMATION SYSTEMS -COLLEGE OF COMPUTERS -UNIVESITY OF AL-ANBAR

ARTICLE INFO

Received: 5/5/2007
Accepted: 25 / $11 / 2007$
Available online: 14/6/2012
DOI: 10.37652/juaps.2007.15603

Keywords:

Linear code,
polynomial,
modulo z^{n}.

ABSTRACT

A polynomial $\mathrm{p}(\mathrm{x})=\mathrm{a}^{0}+\mathrm{a}^{1} \mathrm{x}+\ldots+\mathrm{a}^{d} \mathrm{x}^{d}$ is said to be a permutation polynomial over a finite ring R If P permute the elements of R . where R is the ring $\left(\mathrm{Z}^{n},+, \bullet\right)$.

It is known that mutually orthogonal Latin of order n, where n is the element in Z^{n} generate $\mathrm{A}\left[^{\frac{1}{2}}\right.$] - error correcting code with n^{2} code words. And we found no a pair of polynomial defining a pair of orthogonal Latin square modulo Z^{n} where $\mathrm{n}=2^{w}$ generate a linear code.

Introduction :-
A polynomial $\mathrm{p}(\mathrm{x})=\mathrm{a}^{0}+\mathrm{a}^{1} \mathrm{x}+\ldots+\mathrm{a}^{d} \mathrm{x}^{d}$ with integral coefficient is a permutation polynomial modulo n if and only if a^{1} is odd and $\left(a^{2}+a^{4}+a^{6}+\right.$ $\ldots)$ is even and $\left(a^{3}+a^{5}+a^{7}+\ldots\right)$ is even . and this condition satisfies where $\mathrm{n}=2^{w}, \mathrm{w} \geq 2$ and this condition
depend only on the parity of the coefficient . it is easy to state necessary and sufficient condition for polynomial to represent a Latin square of order $n=2^{w}$

Latin square are dealt with extensively in Denes and Keed well [1974]. Two $n \times n$ Latin squares $A=a^{i j}$ and $B=b^{i j}$ are orthogonal if Latin square:

$$
\left\{\left(\mathrm{a}^{i j}, \mathrm{~b}^{i j}\right): \mathrm{i}, \mathrm{j} \in\{0,1,2, \ldots, \mathrm{n}-1\}\right\}=\mathrm{n}^{2}
$$

As set of $t>0$ Latin squares are pairwise mutually orthogonal if every pair of Latin squares in the set are orthogonal . A code C is Linear if the addition of

[^0]any two code words is another codeword. A $n \times n$
matrix $\mathrm{L}=\mathrm{L}^{i j}$ is a Latin square that generate
a linear code modulo n iff L is of the form $\mathrm{L}^{i j}=$ (i $\left.\beta^{\beta}+{ }_{\mathrm{j}}\right)$ mod n for some integer $\alpha, \beta_{\text {satisfying: }}$
$1-0<\alpha, \beta_{<\mathrm{n}}$
$2-\operatorname{gcd}(\alpha, \mathrm{n})=\operatorname{gcd}\left(\beta_{, \mathrm{n}}\right)=1$
This condition characterize every Latin square that generate a linear code modulo n , and if n is even or a power of 2 are not very useful in terms of generating linear codes modulo n. characterizing permutation polynomial:

Theorem (1) : Let $\mathrm{p}(\mathrm{x})=\mathrm{a}^{0}+\mathrm{a}^{1} \mathrm{x}+\ldots+\mathrm{a}^{d} \mathrm{x}^{d}$ be a polynomial with integral coefficient and its a permutation polynomial modulo z^{n} where $\mathrm{n}=2^{w}$ where $\mathrm{w}>0$, and let $\mathrm{m}=2^{w-1}=n / 2$. Then $\mathrm{p}(\mathrm{x})$ is permutation polynomial modulo m.
proof :Clearly, $\mathrm{p}(\mathrm{x}+\mathrm{m})=\mathrm{p}(\mathrm{x})(\bmod \mathrm{m})$ for any x .
Assume that $\mathrm{p}(\mathrm{x})$ is permutation polynomial modulo n . if p is not a permutation polynomial modulo m , such that $p(x)=p\left(x^{\prime}\right)=y(\bmod m)$, for some y.

This collision means there are four values $\{x, x+m$, $\left.\mathrm{x}^{\prime}, \mathrm{x}^{\prime}+\mathrm{m}\right\}$ modulo n that p maps to a value congruent to y modulo m . But there can only be two such values if p is a permutation polynomial, since there are only two values in Z^{n} congruent to y modulo m .

Lemma*:
Let $\mathrm{p}(\mathrm{x})=\mathrm{a}^{0}+\mathrm{a}^{1} \mathrm{x}+\ldots+\mathrm{a}^{d} \mathrm{x}^{d}$ be polynomial with integral coefficient, and let $n=2 m$, if $p(x)$ is a permutation polynomial modulo n , then $\mathrm{p}(\mathrm{x}+\mathrm{m})=$ $\mathrm{p}(\mathrm{x})+\mathrm{m}(\bmod \mathrm{n})$ for all $\mathrm{x} \in \mathrm{Z}^{n}$.
proof :
This follows directly from theorem (1), since the only two values modulo n that are congruent modulo m to $\mathrm{p}(\mathrm{x})$ are x and $\mathrm{p}(\mathrm{x})+\mathrm{m}$.

Example : the following are permutation polynomial modulo Z^{n} where
$\mathrm{n}=2^{w} \mathrm{w}>1$:

- $x(a+b x)$ where a is odd and b is even.
- $x+x^{2}+x^{4}$.
- $1+\mathrm{x}+\mathrm{x}^{2}+\ldots+\mathrm{x}^{d}$, where $\mathrm{d}=1(\bmod 4)$

Theorem (2) : A polynomial
$\mathrm{p}(\mathrm{x}, \mathrm{y})=\sum_{i, j} a_{i j} x^{i} y^{j}$ represents a latin square modulo $\mathrm{n}=2^{w}$ where $\mathrm{w} \geq 2$, iff the four polynomial $\mathrm{p}(\mathrm{x}, 0), \mathrm{p}(\mathrm{x}, 1), \mathrm{p}(0, \mathrm{y})$ and $\mathrm{p} 1, \mathrm{y})$, and are all permutation polynomial modulo n.

Example : second - degree polynomial representing a
Latin square modulo $\mathrm{n}=2^{w}$

$$
2 x y+x+y=x .(2 y+1)+y=y \cdot(2 x+1)+x
$$

A method of constructing an - error - correcting code of distance $t+1$ with n^{2} code words of length $t+2$ when given t mutually orthogonal Latin square :

Given t mutually orthogonal Latin square $\mathrm{L}^{1}, ~ \mathrm{~L}{ }^{2}$, \ldots, L^{t}, the code is the set of all code words of the
form $\left(\mathrm{i}, \mathrm{j}, 1^{1}, 1^{2}, \ldots 1^{t}\right)$ where l^{1} is the I, j-th entry of $\mathrm{L}^{1}, 1_{2}$ is the I, j- th entry of $\mathrm{L}{ }^{2}$ and 1^{k} is the I, j-entry of L^{k} where $1 \leq \mathrm{k} \leq \mathrm{t}$.

The following example using two orthogonal Latin square of order 3, with our notation the two Latin square are :

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right]
$$

The code constructed using these two is

$$
\{(0,0,0,0),(0,1,1,1),(0,2,2,2),(1,0,1,2)
$$

$$
(1,1,2,0),(1,2,0,1),(2,0,2,1),(2,2,1,0)\}
$$

A noteworthy feature of this code is that it is also a linear code when addition and multiplication are defined modulo n.

If C is a linear code we say that these Latin square generate a linear code modulo n, where n is the order of Latin squares

The following theorem provides necessary and sufficient conditions for two Latin square that generate linear codes modulo n by themselves to be orthogonal . two such orthogonal Latin square when taken together generate another linear code modulo n.
Theorem (3) :

$$
\text { let } \mathrm{A}=\left(\mathrm{a}^{i j}, \alpha_{1}, \beta_{1}\right) \text { and }
$$

$\mathrm{B}=\left(\mathrm{b}^{i j}, \alpha_{2}, \beta_{2}\right)$. then A and B are orthogonal iff

$$
\operatorname{gcd}\left(\left(\beta_{1} \alpha_{1}^{-1}-\beta_{2} \alpha_{2}^{-1}\right), \mathrm{n}\right)=1
$$

Proof: assume that gcd (($\left.\left.\beta_{1} \alpha_{1}{ }^{-1}{ }_{-} \beta_{2} \alpha_{2}{ }^{-1}\right), \mathrm{n}\right)=1$ now assume that two corresponding entries of A and B are equal : $(\mathrm{g}, \mathrm{h})=($ $\left.\mathrm{a}^{i 1 j 1}, \mathrm{~b}^{i 1 j 1}\right)=\left(\mathrm{a}^{i 2 j 2}, \mathrm{~b}^{i 2 j 2}\right)$
Then, by (let $\mathrm{A}=\left(\mathrm{a}^{i j}, \alpha, \beta\right.$) and let g be some integer in the range $0 \leq \mathrm{g}<\mathrm{n}$. then g occurs in the i-th row of A at the position $\left.\mathrm{a}^{i, g \alpha^{-1}-i \beta \alpha^{-1}}\right) \ldots\left({ }^{*}\right)$, we have

$$
\begin{align*}
& \mathrm{j}^{1}=\mathrm{g} \beta_{1^{-1}-\mathrm{i}^{1}} \beta_{\mathbf{1}} \alpha_{1^{-1}}=\mathrm{h} \alpha_{2^{-1}}- \\
& \mathrm{i}^{1} \beta_{2} \alpha_{2^{-1}}=\mathrm{j}^{1} \tag{1}\\
& \mathrm{j}^{2}=\mathrm{g} \alpha_{1}^{-1}-\mathrm{i}_{2} \beta_{1} \alpha_{1}^{-1}=\mathrm{h} \alpha_{2}^{-1}- \\
& \mathrm{i}_{2} \beta_{2} \alpha_{2^{-1}}=\mathrm{j}{ }^{2} \tag{2}\\
& \text { subtracting (1) from (2) yields } \\
& \mathrm{i}_{1} \beta_{1} \alpha_{1}{ }^{-1}{ }_{-\mathrm{i} 2} \beta_{1} \alpha_{1}{ }^{-1}= \\
& \text { i }^{1} \beta_{2} \alpha_{2^{-1}-\mathrm{i}{ }^{2}} \beta_{2} \alpha_{2^{-1}} \\
& \Rightarrow \mathrm{i} 1_{1} \beta_{1} \alpha_{1^{-1}-\mathrm{i} 2} \beta_{1} \alpha_{1}^{-1}-\mathrm{i} 1_{1} \beta_{2} \alpha_{2}^{-1}+ \\
& \mathrm{i}_{2} \beta_{2} \alpha_{2^{-1}}=0 \\
& \Rightarrow \text { i } 11\left(\beta_{1} \alpha_{1}^{-1}-\beta_{2} \alpha_{2}^{-1}\right)-\mathrm{i} 2\left(\beta_{1} \alpha_{1}^{-1}-\right. \\
& \left.\beta_{2} \alpha_{2^{-1}}\right)=0 \\
& \Rightarrow\left(\mathrm{i}_{1}-\mathrm{i}^{2}\right)\left(\beta_{1} \alpha_{1}^{-1} \beta_{-} \beta_{2} \alpha_{2^{-1}}\right)=0
\end{align*}
$$

We have that $\mathrm{i}^{\mathbf{1}}=\mathrm{i}^{2}$, since
$\left.\operatorname{gcd}\left(\beta_{1} \alpha_{1^{-1}}{ }^{-1} \beta_{2} \alpha_{2}{ }^{-1}\right), \mathrm{n}\right)=1$, comparing (1) and (2)

We see that $\mathrm{j}^{1}=\mathrm{j}^{2}$.
Now, assume
$\operatorname{gcd}\left(\left(\beta_{1} \alpha_{1}{ }^{-1}-\beta_{2} \alpha_{2}{ }^{-1}\right), \mathrm{n}\right)>1$, then for some integer $\mathrm{k}, 0<\mathrm{k}<\mathrm{n}$

We have that $\mathrm{k}\left(\beta_{1} \alpha_{1}{ }^{-1}-\beta_{2} \alpha_{2}^{-1}\right)=0$, from (*), 0 occurs in the k -th row in A at $-\mathrm{k} \beta_{1} \alpha_{1}{ }^{-1}$, and in B at $-\mathrm{k} \beta_{2} \alpha_{2}^{-1}$, but $\mathrm{k}\left(\beta_{1} \alpha_{1}{ }^{-1}-\beta_{2} \alpha_{2}{ }^{-1}\right)=$ $0 \Rightarrow \mathrm{k} \beta_{2} \alpha_{2}{ }^{-1}=\mathrm{k} \beta_{1} \alpha_{1}{ }^{-1}$
$\Rightarrow{ }_{-\mathrm{k}} \beta_{2} \alpha_{2^{-1}}=-\mathrm{k} \beta_{1} \alpha_{1}{ }^{-1}$
This means that the pair (0,0) occurs twice among corresponding entries from A and B are not orthogonal

Lemma $^{* *}:$ Let $\mathrm{A}=\left(\mathrm{a}^{i j}, \alpha_{1}, \beta_{1}\right)$ and $\mathrm{B}=\left(\mathrm{b}^{i j}\right.$, α_{2}, β_{2}) then
(1) if $\alpha_{1}=\beta_{1}$ then A and B are orthogonal only if $\alpha_{2} \neq \beta_{2}$.
(2) if $\alpha_{1}=\beta_{1}$ then A and B are orthogonal iff gcd $\left(\begin{array}{ll}\alpha_{2} \beta_{2}, \mathrm{n}\end{array}\right)=1$.
(3) if $\alpha_{1}=\alpha_{2}$ then A and B are orthogonal iff gcd $\left.{ }_{(} \beta_{2,} \beta_{1, n}\right)=1$.
(4) if $\alpha_{1=} \beta_{1} \neq \beta_{2}$ then A and B are orthogonal $\operatorname{iff} \operatorname{gcd}\left(\beta_{2-} \alpha_{1}, \mathrm{n}\right)=1$.

It is of interest to know how many mutually orthogonal Latin square of some n exist that together generate a linear cods modulo n.
The following theorem gives an upper bound for this number .

Theorem (4) : suppose that the prime factorization of n is $\mathrm{n}=\mathrm{p}^{1} \mathrm{p}^{2} \ldots . \mathrm{p}^{h}$, such that $\mathrm{p}^{1} \leq \mathrm{p}^{2} \leq \ldots \leq \mathrm{p}^{h}$ and $p^{1} p^{2} \ldots p^{h}$ are prime . then there are at most $p^{1}-$ 1 mutually orthogonal Latin square of order n that generate a linear cods modulo n.
proof: suppose that there exist a set of more than $\mathrm{p}^{1}-$ 1 mutually orthogonal Latin square of order n that generate a linear code modulo n.

Fix one of the Latin square in S, say

$$
\mathrm{A}=\left(\mathrm{a}^{i j}, \alpha_{1}, \beta_{1}\right)
$$

consider the set of difference :

$$
\mathrm{D}=\left\{\left(\beta_{1} \alpha_{1}^{-1}-\beta m \alpha m^{-1}\right):\right.
$$

$$
\left.\left(1^{m}{ }_{i j}, \alpha m, \beta m\right) \in(\mathrm{S}-\{\mathrm{A}\})\right\}\left(\bmod \mathrm{p}^{1}\right)
$$

Suppose that there exist two Latin square $B=\left(b^{i j}\right.$, $\left.\alpha_{2}, \beta_{2}\right) \operatorname{andC}=\left(\mathrm{C}^{i j}, \alpha_{3}, \beta_{3}\right)$
In $\mathrm{S}-\{\mathrm{A}\}$ such that $\beta_{1} \alpha_{1}{ }^{-1}{ }_{-} \beta_{2} \alpha_{2}{ }^{-1} \equiv$ $\beta_{1} \alpha_{1^{-1}}{ }^{-1} \beta_{3} \alpha_{3^{-1}}\left(\bmod \mathrm{p}^{1}\right)$
This implies that $\beta_{2} \alpha_{2^{-1}} \beta_{3} \alpha_{3^{-1}}^{\equiv} 0$ ($\bmod \mathrm{p}^{1}$). however by theorem (3)

We have B and C are not orthogonal because gcd ($\left.\beta_{2} \alpha_{2^{-1}} \beta_{3} \alpha_{3^{-1}}, \mathrm{n}\right) \neq 1$, A contradiction . thus, we have that each Latin square in $S-\{A\}$ contribute a distinct element to D .

This means that there are exactly $p^{1}-1$ elements in S
$-\{\mathrm{A}\}$ and that $\mathrm{D}=\left\{1,2, \mathrm{p}^{1}-1\right\}$
There for $\beta_{1} \alpha_{1}{ }^{-1} \bmod \mathrm{p}_{1} \in \mathrm{D}$. So for some Latin square $\mathrm{K}=\left(1_{i j}, \alpha_{k}, \beta_{k}\right)$ we have that $\beta_{1} \alpha_{1^{-1}}{ }^{-1} \beta_{k} \alpha_{k}{ }^{-1} \equiv \beta_{1} \alpha_{1^{-1}}\left(\bmod \mathrm{p}^{1}\right)$.
However, this implies that $\beta_{k} \alpha_{k}{ }^{-1} \equiv 0(\bmod$ p^{1}), which is a contradiction because by (if $\mathrm{n} \times \mathrm{n}$

Latin square $\mathrm{L}=1^{i j}$ generate a linear code modulo n then $1^{00}=0$)
K is not a Latin square .
Theorem (5) : suppose that the prime factorization of n is $\mathrm{n}=\mathrm{p}^{1} \mathrm{p}^{2} \ldots . \mathrm{p}^{h}$, such that $\mathrm{p}^{1} \leq \mathrm{p}^{2} \leq \ldots \leq \mathrm{p}^{h}$ and $p^{1} p^{2} \ldots p^{h}$ are prime . then there exists such that $p^{1}-1$ mutually orthogonal Latin square of order n that generate a linear code modulo n.
proof : let α be an integer in the range
$0<\alpha<\mathrm{n}$ that is relatively prime to n .
then the $\mathrm{p}^{1}-1$ Latin square of the of the form rm L $\mathrm{L}^{k}=\left(1^{k}:, \alpha, \beta\right)$ as k ranges from 1 to $\mathrm{p}^{1}-1$ mutually orthogonal by
(Lemma ${ }^{* *}$ above part 3).
so by (theorem 4) this is a maximal set of mutually orthogonal Latin square of order n that generate a linear code modulo n .

Example : we give an example of a linear code generate from 4 mutually orthogonal Latin square of order 5 . we use the method described in the proof of theorem (5) with

$$
\alpha=4:
$$

$$
\begin{array}{lllll}
{\left[\begin{array}{lllll}
0 & 4 & 3 & 2 & 1 \\
1 & 0 & 4 & 3 & 2 \\
2 & 1 & 0 & 4 & 3 \\
3 & 2 & 1 & 0 & 4 \\
4 & 3 & 2 & 1 & 0
\end{array}\right]} & {\left[\begin{array}{lllll}
0 & 4 & 3 & 2 & 1 \\
2 & 1 & 0 & 4 & 3 \\
4 & 3 & 2 & 1 & 0 \\
1 & 0 & 4 & 3 & 2 \\
3 & 2 & 1 & 0 & 4
\end{array}\right],} \\
{\left[\begin{array}{lllll}
0 & 4 & 3 & 2 & 1 \\
4 & 3 & 2 & 1 & 0 \\
3 & 2 & 1 & 0 & 4 \\
2 & 1 & 0 & 4 & 3 \\
1 & 0 & 4 & 3 & 2
\end{array}\right]} & {\left[\begin{array}{lllll}
0 & 4 & 3 & 2 & 1 \\
3 & 2 & 1 & 0 & 4 \\
1 & 0 & 4 & 3 & 2 \\
4 & 3 & 2 & 1 & 0 \\
2 & 1 & 0 & 4 & 3
\end{array}\right]}
\end{array}
$$

The code C generate by these Latin square is $\mathrm{C}=($ $\mathbf{0 , 0 , 0 , 0 , 0 , 0}),(\mathbf{0 , 1 , 4 , 4 , 4 , 4) ,}$
$(\mathbf{0}, 2,3,3,3,3),(\mathbf{0}, 3,2,2,2,2),(\mathbf{0}, 4,1,1,1,1)$,
$(1,0,1,2,3,4),(1,1,0,1,2,3),(1,2,4,0,1,2)$,
$(\mathbf{1 , 3 , 3 , 4 , 0 , 1)},(\mathbf{1 , 4 , 2 , 2 , 4 , 0}),(\mathbf{2}, \mathbf{2}, \mathbf{4 , 1 , 3}),(\mathbf{2 , 1 , 1 , 3 , 0 , 2) , (}(2,2,0,2,4,1)$, (2,3,4,1,3,0),
$(\mathbf{2}, 4,3,0,2,4),(\mathbf{3}, 0,31,4,2),(\mathbf{3 , 1 , 2 , 0 , 3 , 1})$,
$(\mathbf{3}, \mathbf{2}, \mathbf{1 , 4 , 2 , 0}),(\mathbf{3}, 3,0,3,1,4),(3,4,4,2,0,3)$,
$(\mathbf{4}, \mathbf{0}, \mathbf{4}, \mathbf{2}, \mathbf{1}),(\mathbf{4}, \mathbf{1 , 3 , 2 , 1 , 0}),(4,2,2,1,0,4),(4,3,1,0,4,3),(4,4,0,4,3,2)$.
This code is linear and one example of this is as follows:

$$
\begin{aligned}
& (1,2,4,0,1,2)+(3,4,4,2,0,3)+(2,1,1,3,0,2)+ \\
& (3,3,0,3,1,4)=(4,0,4,3,2,1) \in \mathrm{C} .
\end{aligned}
$$

We can easily develop for computing pairs of orthogonal Latin square that generate a linear code modulo n , for any odd n using (lemma ${ }^{* *}$) above

$$
\mathrm{L}^{1}=1^{i j} \text { defined by } 1^{i j}=\left(2^{k} \mathrm{i}+\mathrm{j}\right) \bmod \mathrm{n}
$$

And $\mathrm{L}^{2}=1^{i j}$ defined by $1^{i j}=\left(2^{k-1} \mathrm{i}+\mathrm{j}\right)$ mod n This works whenever $2^{k}<\mathrm{n}$ because

$$
\mathrm{L}^{1}=\left(1^{i j}, 1,2^{k}\right) \text { and } \mathrm{L}^{2}=\left(1^{i j}, 1,2^{k-1}\right)
$$

However by(lemma *** part (3)) these are orthogonal because ,
$\operatorname{gcd}\left(2^{k}-2^{k-1}, \mathrm{n}\right)=\operatorname{gcd}\left(2^{k-1}, \mathrm{n}\right)=1$, since n is odd.
When $\mathrm{n}=2^{w}$, the following theorem show that there are no pair of mutually orthogonal Latin square of even order .
Theorem (6) : there are no two polynomial $\mathrm{P}_{1}(\mathrm{x}, \mathrm{y})$, $\mathrm{P}_{2}(\mathrm{x}, \mathrm{y})$ modulo 2^{w} for $\mathrm{w} \geq 1$ that form a pair of orthogonal Latin squares.
proof: (Lemma*) implies that $\mathrm{P}(\mathrm{x}+\mathrm{m}, \mathrm{y}+\mathrm{m})=\mathrm{P}(\mathrm{x})$ $+\mathrm{m}(\bmod \mathrm{m})$ for any permutation polynomial modulo n $=2 \mathrm{~m}$.
thus $\mathrm{P}_{i}(\mathrm{x}+\mathrm{m}, \mathrm{y}+\mathrm{m})=\mathrm{P}_{i}(\mathrm{x}+\mathrm{m}, \mathrm{y})+\mathrm{m}(\bmod \mathrm{n})=$ $\mathrm{P}_{i}(\mathrm{x}, \mathrm{y})+2 \mathrm{~m}(\bmod \mathrm{n})$
$\quad=\mathrm{P}_{i}(\mathrm{x}, \mathrm{y})(\bmod \mathrm{n})$
Therefore $\left(P_{1}(x, y), P_{2}(x, y)\right)$
$=\left(P_{1}(x+m, y+m), P_{2}(x+m, y+m)\right)$ and the Pair $\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$ fails at being a pair of orthogonal Latin squares.
Theorem (7) : If n is an even positive integer, then there is no pair of $\mathrm{n} \times \mathrm{n}$ mutually orthogonal Latin squares that generate a linear code modulo n.

Proof : Let $\mathrm{A}=\mathrm{a}^{i j}$ and $\mathrm{B}=\mathrm{b}{ }^{i j}$ be two $\mathrm{n} \times \mathrm{n}$ mutually orthogonal Latin squares that generate a linear code with $\mathrm{n}=2 \mathrm{k}$, for some positive integer k .

Then by (if $\mathrm{n} \times \mathrm{n}$ Latin square $\mathrm{L}=1^{i j}$ generate a linear code modulo n then $\left.1^{00}=0\right), 2\left(0, \mathrm{k}, \mathrm{a}^{0 k}, \mathrm{~b}^{0 k}\right)$

$$
\begin{aligned}
= & \left(0,2 \mathrm{k}, 2 \mathrm{a}^{0 k}, 2 \mathrm{~b}^{0 k}\right) \\
& =\left(0,0,2 \mathrm{a}^{0 k}, 2 \mathrm{~b}^{0 k}\right)=(0,0,0,0) .
\end{aligned}
$$

This means that $2 \mathrm{a}^{0 k}=0$ and $2 \mathrm{~b}^{0 k}=0$. we have that $\mathrm{a}^{0 k} \neq 0$ and $\mathrm{b}^{0 k} \neq 0$ because 0 already occurs in the first rows of A and B . thus, we clearly have that $\mathrm{a}^{0 k}=\mathrm{b}^{0 k}=\mathrm{k}$,

However, we also have $2\left(\mathrm{k}, 0, \mathrm{a}^{k 0}, \mathrm{~b}^{k 0}\right)=(0,0,2$ $\mathrm{a}^{k 0}, 2 \mathrm{~b}^{k 0}$) hence $\mathrm{a}^{k 0}=\mathrm{b}^{k 0}=\mathrm{k}$

Therefore $\left(\mathrm{a}^{0 k}, \mathrm{~b}^{0 k}\right)=\left(\mathrm{a}^{k 0}, \mathrm{~b}^{k 0}\right)=(\mathrm{k}, \mathrm{k})$
And we have that A and B are not orthogonal, a contradiction.

References

[1] Marshall Hall, Jr. Combinatorial Theory. Blaisdell publishing company, 1967.
[2] G.H. Hardy and E. M. Wright. An Introduction to the theory of Numbers,Oxford Clarendon Press , fourth edition, 1983 .
[3] Rudolf Lidl and Gary L. Mullen. When dose a polynomial over a finite field permute the elements of the field? The American Math. Monthly, 95 (3) : 243-246, Mar 1988 .
[4] Rex Matthews. Permutation properties of the polynomial $1+\mathrm{x}+\ldots+\mathrm{x}^{k}$ over a finite field. Proc. Amer. Math. Soc., 120(1):47-51. Jan 1994.
[5] G. Mullen and H. S tevens . Polynomial function $(\bmod m)$. Acta Mathematica Hungaria, 44(3-4):237-241, 1984 .
[6] Joachim von Gathen. Tests for permutation polynomials . SIAM J. Computing, 20(3) : 591602, June 1991 .
[7] J.Denes and A.D. Keedwell , Latin square and their applications , A cademic Press , New York and London, (1974).
[8] John B. Fraleigh , A First Course in Abstract Algebra , Addison - Wwsley , Massachusetts , (1997) .

n الرمز الخطي لمتعددةٌ حدود مقياس

الخلاصة:
متعددة الحدود $\mathrm{p}(\mathrm{x})=\mathrm{a} 0+\mathrm{ax}{ }^{2} \mathrm{x}+\mathrm{a}^{1} \mathrm{X}^{d}+\ldots .+\mathrm{a}{ }^{2}{ }^{d}$ تسمى متعددة حدود تبادلية على الحقل النهائي Rإذا كان P تبادل عناصر الحقل R • حبث R هي R Z R R , , + ,) . والمربعات اللاتينية المتبادلة المتعامدة من المرنبة n حيث انه n هي من عناصر الإعداد الصحيحة 2/1 2/1 من الرمز الخاطئ المصحح لn ${ }^{2}$ n ${ }^{n}$

المتعامدة مقياس

[^0]: ——* Corresponding author at: DEPT. OF INFORMATION SYSTEMS -COLLEGE OF COMPUTERS -UNIVESITY OF AL-ANBAR, Iraq.E-mail address: mak alturky@yahoo.com

