On Q-Injective, Duo Submodules of C_{1}-Module

Abdulsalam F. Talak*, and Majid Mohammed Abed
Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Ramadi, Iraq

ARTICLE INFO

Received: 1/ 3 /2021
Accepted: 15 / 4 / 2021
Available online: 1 / 6/ 2021
DOI: 10.37652/juaps.2022.172431

Keywords:

Quasi-injective module,
Duo submodule, Stable module, Pseudo-injective module.

Copyright©Authors, 2021, College of Sciences, University of Anbar. This is an open-access article under the CC BY 4.0 license (http://creativecommons.org/licens es/by/4.0/).

Abstract

This note investigates modules having quasi-injective and duo submodules. We introduce a new generalization of C_{1}-module. The main method that was adopted in this generalization is how to obtain a submodule \mathcal{N} in \mathcal{M} having the characteristic Quasiinjective. We investigate the relationship between pseudo-injective module and Quasiinjective property of C_{1}-module. Finally, we introduce a new relationship between Quasiinjective submodule and anti-hopfian module.

1. INTRODUCTION

All the modules in this paper have a unity. Many searchers studied Quasi-injective and injective modules in details. Here we study Quasi-injective of any submodule \mathcal{N} of \mathcal{M}. In [1], An R-module P is a projective module if there exists an R module Q such that $\mathrm{P} \oplus \mathrm{Q}$ is a free R-module; also more details about injective and projective module can find it in same reference. In [2], we can find the definition of a Quasiinjective module (briefly Q-injective). Also, in [3], the author said \mathcal{M} is pseudo-injective module (p-injective module) if $\forall \mathcal{N} \leq \mathcal{M}$, each R-isomorphism $g: \mathcal{N} \rightarrow \mathcal{M}$ can be extended to an R-endomorphism of \mathcal{M}. In [4], A module \mathcal{M} is called uniform if \mathcal{N}_{1} and \mathcal{N}_{2} are non-zero submodules of $\mathcal{M} ; \mathcal{N}_{1} \cap$ $\mathcal{N}_{2} \neq 0$ the intersection of any two non-zero submodules is nonzero, equivalently, \mathcal{M} is uniform if $0 \neq \mathcal{N} \leq_{\text {ess }} \mathcal{M}$. In [5], $\mathcal{N} \leq \mathcal{M}$ is called stable if for each R-homomorphism $f: \mathcal{N} \rightarrow \mathcal{M}$ implies $f(\mathcal{N}) \subseteq \mathcal{N}$, and an R-module \mathcal{M} is called fully stable in case every submodule of \mathcal{M} is stable.

[^0]In this article, we investigate some facts about any submodule \mathcal{N} of C_{1}-module \mathcal{M} like Q -injective and duo properties. Also we use other properties in order to satisfy the same goal such as hopfian, anti-hopfian and self-injective modules.

2.PSEUDO-INJECTIVE and QUASI-INJECTIVE SUBMODULES

In this section, we will study two important properties of submodule \mathcal{N} of \mathcal{M} namely Quasi-injective and P-injective. Via this submodule, we obtain a new characterization of C_{1} module. Moreover; we should provide another property namely fully invariant of this submodule. Note that Qinjective itself injective.

Definition 2.1. [1]. An R-module \mathcal{M} is called injective if for every monomorphism $h: \mathcal{M}_{1} \rightarrow \mathcal{M}_{2}$ and homomorphism $f: \mathcal{M}_{1} \rightarrow \mathcal{M}_{3}$ there exists a homomorphism $g: \mathcal{M}_{2} \rightarrow \mathcal{M}_{3}$ such that $g \circ h=f$.
Definition 2.2. [2]. Let \mathcal{M} be an R-module. Then \mathcal{M} is said to be Q -injective if for each submodule \mathcal{N} of \mathcal{M} and R homomorphism $f: \mathcal{N} \rightarrow \mathcal{M}$ can be extended to an R endomorphism of \mathcal{M}.
Definition 2.3. [3]. An R-module \mathcal{M} is called pseudoinjective, if for every submodule \mathcal{N} of \mathcal{M}, each R -
isomorphism $g: \mathcal{N} \rightarrow \mathcal{M}$ can be extended to an R endomorphism of \mathcal{M}.
Lemma 2.4. [6]. Let \mathcal{M} be an R-module over P.I.D. If \mathcal{M} is pseudo-injective module, so it is a Q-injective.

Now we need to find a submodule \mathcal{N} of \mathcal{M} such that \mathcal{N} is a Q-injective with invariant property. From [3], any pseudoinjective module over P.I.D is a Q-injective; this means if \mathcal{M} is a module on P.I.D, so $\mathcal{N} \leq \mathcal{M}$ on P.I.D, but \mathcal{M} is pseudoinjective; \mathcal{N} is a pseudo-injective and hence \mathcal{N} is a Q injective.
Note that to understanding lemma (2.4), we can see [7].

The following theorem explain the relationship between pseudo-injective and C_{1}-module over P.I.D.
Theorem 2.5. Let a ring R be a P.I.D. If \mathcal{M} is a pseudoinjective C_{1}-module over R , then any submodule $\mathcal{N} \leq \mathcal{M}$ is a Q-injective and $\mathrm{f}(\mathcal{N}) \subseteq \mathcal{N}$; so \mathcal{M} is Q -injective-duo- C_{1} module.
Proof: Suppose that a module \mathcal{M} is pseudo-injective. Let us take $\mathcal{N} \leq \mathcal{M}$. We have \mathcal{M} any module on P.I.D So also $\mathcal{N} \leq$ \mathcal{M} on P.I.D. But \mathcal{M} is pseudo-injective, then \mathcal{N} is pseudoinjective over P.I.D. Hence \mathcal{N} is Q-injective with $\mathrm{f}(\mathcal{N}) \subseteq \mathcal{N}$ imply \mathcal{N} is fully invariant (duo) submodule of \mathcal{M}. Thus \mathcal{M} is Q-injective-duo- C_{1}-module.

Now we introduce another way to obtain any submodule \mathcal{N} of C_{1}-module \mathcal{M} and be Q -injective. This way depends on new domain namely Dedekind domain. (R is a Dedekind domain if it is integrally closed, Noetherian and if $0 \neq \mathrm{p}$ is a maximal; p is prime ideal). So if R is a Dedekind domain, then it is a UFD if and only if R is P.I.D. See the next Lemma:

Lemma 2.6. [7]. Let \mathcal{M} be an R-module over Dedekind domain. If \mathcal{M} is pseudo-injective (P-injective), then \mathcal{M} is a Q injective and so $\mathcal{N} \leq \mathcal{M}$ is a Q -injective submodule.
Theorem 2.7. Let \mathcal{M} be a Pseudo-injective- C_{1}-module over Dedekind domain. If \mathcal{M} is stable, then \mathcal{M} is Q -injective -duo-C_{1}-module.
Proof: Assume that a module \mathcal{M} is Pseudo-injective and R is a Dedekind domain. From lemma (2.6), \mathcal{M} is a Q -injective. So $\mathcal{N} \leq \mathcal{M}$ is also Q -injective. But \mathcal{M} is stable, so \mathcal{N} is a fully invariant. Therefore \mathcal{N} is a duo submodule of \mathcal{M}.
Lemma 2.8. [7]. Let \mathcal{M} be an R-module. If the following statements are true:
(1)- R is Multiplication ring;
(2)- \mathcal{M} is P-injective;
(3)- $T(\mathcal{M})=\mathcal{M}$;
then \mathcal{M} is Q -injective and so \mathcal{N} is also Q -injective.

Theorem 2.9. Let \mathcal{M} be a module over a ring R. If:
(1)- R is multiplication ring;
(2)- $T(\mathcal{M})=\mathcal{M}$;
(3)- \mathcal{M} is stable;
(4)- \mathcal{M} is D_{1}-module and Pseudo-injective;
then \mathcal{M} is Q -injective-duo- C_{1}-module.
Proof: Assume that $T(\mathcal{M})=\mathcal{M}$ and R is a multiplication ring. Then from [8], $T(\mathcal{N})=\mathcal{N}$ (any submodule of torsion module is torsion). Since \mathcal{M} is P-injective, then \mathcal{M} is a Q injective and hence \mathcal{N} is P-injective and $T(\mathcal{N})=\mathcal{N} \ni \mathcal{N} \leq$ \mathcal{M}. Hence \mathcal{N} is a Q -injective. Since \mathcal{M} is stable, then \mathcal{N} is a fully invariant. But from condition (4), \mathcal{M} is C_{1} - module. Then \mathcal{M} is a Q -injective-duo- C_{1}-module.
Corollary 2.10. If \mathcal{M} is C_{1}-pseudo-injective R-module, then \mathcal{M} is Q-injective-duo- C_{1}-module, knowing that $f(\mathcal{N}) \subseteq$ \mathcal{N} and $T(\mathcal{M})=\mathcal{M}$.

Recall that any R-module \mathcal{M} is called nonsingular if, for all $m \in \mathcal{M}$ with $r(m) \leq_{\text {ess }} R$ implies that $m=0$. Or $Z(\mathcal{M})=$ $\left\{x \in \mathcal{M} ; \exists\right.$ a right an ideal I of R such that $I \leq_{\text {ess }} R$ and $X I=$ $0\}(Z(\mathcal{M})=0)[9]$.

Lemma 2.11. If $\mathcal{N} \leq_{\text {ess }} \mathcal{M}$ and $Z(\mathcal{M})=0$ in pseudoinjective module \mathcal{M}, then \mathcal{N} is Q-injective.
Proof: Let $\mathcal{N} \leq_{\text {ess }} \mathcal{M}$ and $Z(\mathcal{M})=0$. Let $g: \mathcal{N} \rightarrow \mathcal{M}$ be an R-homomorphism. So $\operatorname{Ker}(g)=0$ or $\operatorname{Ker}(g)=\mathcal{N}$. Suppose that $\operatorname{Ker}(g)=\mathcal{N}$, so g can be extended to homomorphism $h: \mathcal{M} \rightarrow \mathcal{M}$. Now if $\operatorname{Ker}(g)=0$, so g is one to one and can be extended to R-homomorphism from $\mathcal{N} \rightarrow \mathcal{M}(\mathcal{M}$ is Pseudo-injective). Hence \mathcal{N} is Q-injective.
Corollary 2.12. Let \mathcal{M} be a C_{1}-pseudo-injective R-module. If $f(\mathcal{N}) \subseteq \mathcal{N}, \mathcal{N} \leq_{\text {ess }} \mathcal{M}$ and $Z(\mathcal{M})=0 ;$ then \mathcal{M} is Q -injective-duo- C_{1}-module.

Now we present another way in order to obtain that any submodule $\mathcal{N} \leq \mathcal{M}$ is a Q -injective. But before that we need to present some important definitions that are closely related to the mentioned way. Firstly, a concept of Stable-Q-injective was explained in [6].
Let $\phi: \mathcal{N} \rightarrow M \ni \phi(\mathcal{N}) \subseteq \mathcal{N}$. Then \mathcal{M} is called stable module. So if every $\mathcal{N} \leq \mathcal{M}$ is stable this means \mathcal{M} is fully stable module (F-stable).
If $\mathcal{N} \leq \mathcal{M}$ is stable and can be extended R-homomorphism $(\mathcal{N} \rightarrow \mathcal{M})$ to an R-endomorphism $(\mathcal{M} \rightarrow \mathcal{M})$, then \mathcal{M} is called stable-Q-injective R-module. Also, If R is an integral domain and \mathcal{M} is an R-module, then an element $x \in \mathcal{M}$ is called torsion element if $\exists 0 \neq r \in R \ni r x=0$. [10]. So we define:
$T(\mathcal{M})=\{x \in \mathcal{M} ; x$ is a torsion element $\}$.

Note that:

1. If $T(\mathcal{M})=\mathcal{M}$, then a module \mathcal{M} is called torsion-module.
2. If $T(\mathcal{M})=0$, then a module \mathcal{M} is called torsion-free-module.
Lemma 2.13. [6]. Let \mathcal{M} be a stable-Q-injective R-module. If \mathcal{M} is an injective R-module, then it is Q -injective.
Theorem 2.14. Let \mathcal{M} be a C_{1}-module. If \mathcal{M} is a F-stable and stable-Q-injective; then \mathcal{M} is Q -injective-duo- C_{l}-module.
Proof: Let $\mathcal{N} \leq \mathcal{M}$ and let $\phi: \mathcal{N} \rightarrow \mathcal{M}$ be an R homomorphism of \mathcal{M}. So \mathcal{N} is a stable because \mathcal{M} is a F stable. But from stable-Q-injective of \mathcal{M}, there is an $\varphi: \mathcal{M} \rightarrow$ $\mathcal{M} \ni \varphi$ extends ϕ. Hence \mathcal{M} is a Q -injective. Thus \mathcal{M} is $\mathrm{Q}-$ injective-duo- C_{1}-module.
Corollary 2.15. Let \mathcal{M} be a C_{1}-module. If $\mathcal{N} \leq \mathcal{M} ; \varphi(\mathcal{N}) \subseteq$ $\mathcal{N} \ni \varphi: \mathcal{N} \rightarrow \mathcal{M}$ be a homomorphism and $\mathcal{M}=\mathcal{M}_{1} \oplus \mathcal{M}_{2}$ is a stable-Q-injective, then \mathcal{M} is Q -injective-duo- C_{1}-module.
Proof: By Theorem (2.14).
Remark 2.16. From definition of fully invariant submodule and definition of stable, we find the two meanings are same.

Recall that a ring R is called Quasi-Frobenius (QF-ring) if every projective module is injective; or every injective module is discrete. From [11], every projective-module is injective and then every injective-module is Q -injective.

Corollary 2.17. Let \mathcal{M} be a C_{1}-module over QF -ring. If \mathcal{M} is a projective module and stable in R, then \mathcal{M} is Q -injective-duo- C_{1}-module (\mathcal{N} is Q -injective submodule).
Proof: Let R be a QF-ring. Since \mathcal{M} is a projective R module, then \mathcal{M} is an injective module and hence Q -injective. Therefore any submodule \mathcal{N} of \mathcal{M} is Q -injective. Note that \mathcal{M} is stable module; so for $\varphi: \mathcal{N} \rightarrow \mathcal{M}$ be a homo. we get $\varphi(\mathcal{N}) \subseteq \mathcal{N}$. Thus \mathcal{M} is Q -injective-duo- C_{1}-module.

Recall that a module \mathcal{M} is called D_{1}-module if for $\mathcal{N}<\mathcal{M}$, $\exists \mathcal{M}=\mathcal{M}_{1} \oplus \mathcal{M}_{2}$ is a coessential sub of \mathcal{N}; or if $\mathcal{N}, K \leq \mathcal{M}$ and $H \leq \mathcal{N}$, then $\mathcal{M}=\mathrm{H} \oplus \mathrm{K}$ and $\mathcal{N} \cap H \leq \mathcal{M}$. So D_{1-}^{-} module is extending.

Proposition 2.18. Let \mathcal{M} be an R-module over QF-ring R. If:
(1)- \mathcal{M} is D_{1}-module;
(2)- \mathcal{M} is stable module;
(3)- \mathcal{M} is a free-module;
then \mathcal{M} is Q -injective-duo- C_{1}-module.
Proof: From condition (1); \mathcal{M} is C_{1}-module. From condition (2); \exists an R-homomorphism $\varphi: \mathcal{N} \rightarrow \mathcal{M} \ni \varphi(\mathcal{N}) \subseteq \mathcal{N}(\mathcal{N}$ is fully invariant). So \mathcal{N} is a duo submodule. Condition (3); gives \mathcal{M} is a free-module. So if we take F is a free- R-module
on a set S . Suppose that $\mathcal{N}_{1}, \mathcal{N}_{2}$ two modules over the ring R. Let $\varphi: \mathcal{N}_{1} \rightarrow \mathcal{N}_{2}$ is a homomorphism.

$$
\begin{equation*}
\forall x \in S ; \text { we choose } a_{x} \in \mathcal{N}_{1} \ni j(x)=a_{x} \tag{1}
\end{equation*}
$$

Also,

$$
\forall x \in F, g(x) \in \mathcal{N}_{2} \text { and } \varphi: \mathcal{N}_{1} \rightarrow \mathcal{N}_{2} \text { is onto. }
$$

Then

$$
\begin{equation*}
\exists a_{x} \in \mathcal{N}_{1} \ni \varphi\left(a_{x}\right)=g(x) \tag{2}
\end{equation*}
$$

Since F is a free- R-module on S, \exists a unique homomorphism

$$
\begin{equation*}
h: F \rightarrow \mathcal{N}_{1} \ni h \circ i=j \tag{3}
\end{equation*}
$$

To prove that $\varphi \circ h=g$. Let $\mathrm{x} \in \mathrm{F}$. So

$$
\begin{gathered}
x=\sum r_{k} x_{k} ; x_{k} \in S, r_{k} \in R ; k=1,2, \ldots \ldots, n \\
\text { (because } F \text { is generated by } s F=\langle s\rangle)
\end{gathered}
$$

Now

$$
\begin{aligned}
(\varphi \circ h) & (x)=(\varphi \circ h)\left(\sum r_{k} x_{k}\right) \\
= & \varphi\left(h\left(\sum r_{k} x_{k}\right)\right) \\
& =\varphi\left(\sum r_{k} h\left(x_{k}\right)\right)
\end{aligned}
$$

h is homomorphism.

$$
=\varphi\left(\sum r_{k}\left(h\left(i\left(x_{k}\right)\right)\right)\right.
$$

Now

$$
\begin{gathered}
(\varphi \circ h)=\varphi\left(\sum r_{k}\left((h \circ i)\left(x_{k}\right)\right)\right) . \\
=\varphi\left(\sum r_{k}\left(j\left(x_{k}\right)\right)\right) ;(\text { by (3) }) . \\
=\varphi\left(\sum r_{k} a_{x_{k}}\right) ;(\text { by (1)). } \\
=\sum r_{k} \varphi\left(a_{x_{k}}\right) ; \varphi \text { homomorphism. } \\
=\sum r_{k} g\left(x_{k}\right) ;(\text { by }(2)) . \\
=g\left(\sum r_{k} x_{k}\right) .
\end{gathered}
$$

g homomorphism. So $\varphi \circ h=g$. Thus \mathcal{M} is a projective and hence \mathcal{M} is injective (\mathcal{M} is a Q -injective). Then $\mathcal{N} \leq \mathcal{M}$ is Q-injective. Thus \mathcal{M} is a Q -injective-duo- C_{1}-module.
Lemma 2.19. For a ring R, we have R_{R} is a semi-simple if and only if R is a semisimple and so any module \mathcal{M} over R is a semisimple module.
Proof: We need to prove the following,

1. $\quad R_{R}$ semisimple if and only if R is semisimple.
2. \mathcal{M} is a semisimple module over R.

From [11], we can get the proof of (1).
Now we need to proof (2):
If R_{R} is a semisimple and if $\mathcal{M}=\mathcal{M}_{R} \ni m \in \mathcal{M}$, then R is a semisimple as an epimorphic image of R_{R}. So
$\mathcal{M}=\sum m R, m \in \mathcal{M}$ as a sum of semisimple module is again semisimple.
Lemma 2.20. Let a ring R be a semisimple, and \mathcal{M} be an R module. Then every submodule $\mathcal{N} \leq \mathcal{M}$ is Q -injective.

Proof: Since R is a semisimple ring, then every module \mathcal{M} over R is a semisimple. So $\mathcal{N} \leq \mathcal{M}$ is a direct summand. Hence \mathcal{M} is injective R-module. But every injective R-module is a Q-injective. Thus \mathcal{N} is Q -injective.
Theorem 2.21. Let R be a semisimple ring and \mathcal{M} is an R module. If \mathcal{M} is D_{1}-module and stable; then it is Q -injective-duo- C_{1}-module.
Proof: It is clear that from lemma (2.20), $\mathcal{N} \leq \mathcal{M}$ is Q injective. But \mathcal{M} is a stable, then $\exists f: \mathcal{N} \rightarrow \mathcal{M} \ni f(\mathcal{N}) \subseteq \mathcal{N}$. So \mathcal{N} is a fully invariant and hence \mathcal{M} is a duo (\mathcal{N} is a duo submodule). We have \mathcal{M} is D_{1}-module. So it is C_{1}-module. Thus \mathcal{N} is Q-injective of \mathcal{M}.
Corollary 2.22. Let \mathcal{M} be an R-module. If:
(1)- \mathcal{M} is projective module;
(2)- \mathcal{M} is a simple module;
(3)- \mathcal{M} is Q-injective;
then \mathcal{N} is Q -injective and duo submodule of C_{1}-module.
Proof: It is clear that projective module means C_{1}-module. Also, if a module \mathcal{M} is simple, then \mathcal{M} is duo-module. $(\mathcal{N} \leq$ $\mathcal{M} \ni \mathcal{N}$ is fully invariant; $\mathrm{f}(\mathcal{N}) \subseteq \mathcal{N}$ and $f: \mathcal{N} \rightarrow \mathcal{M}$ is an R homomorphism). Now from condition (3), we have \mathcal{M} is Quasi-projective. So \mathcal{M} is a Q -injective and hence \mathcal{N} is a Q injective of C_{1}-module.

Recall that any ring R is called V-ring if every simple R module is injective [12].

Corollary 2.23. Let \mathcal{M} be a $D_{1}-R$-module over V-ring. Then \mathcal{M} is Q -injective-duo- C_{1}-module.

2.HOPFIAN, SELF-INJECTIVE MODULES AND QINJECTIVE SUBMODULE

From [13], a module \mathcal{M} is called self-p-injective if \mathcal{M} satisfy the following condition; every homomorphism from a projection invariant submodule of \mathcal{M} to \mathcal{M} can be lifted to \mathcal{M}.
(\#) Every self-injective is injective module.
Definition 3.1. Any R-module \mathcal{M} is called indecomposable if \mathcal{M} has no proper non trivial complement submodule \mathcal{M}_{1} $\left(\mathcal{M}=\mathcal{M}_{1} \oplus \mathcal{M}_{2}\right.$, so $\mathcal{M}_{1}=0$ or $\left.\mathcal{M}_{1}=\mathcal{M}\right)$.
Example 3.2. Z is indecomposable Z - module, but Z is not simple Z - module (Z contains proper submodule 2 Z). Therefore, every simple module is indecomposable, but the converse is not true.
Theorem 3.3. Let \mathcal{M} be an indecomposable self-P-injective R-module. Then any C_{1-} module is Q -injective-duo- $C_{1}{ }^{-}$ module.

Proof: From definition of self-p-injective, there exists K submodule of \mathcal{M} such that K is fully invariant. Assume that \mathcal{M} is indecomposable module, so every submodule of \mathcal{M} is projective invariant. Then \mathcal{M} is Q -injective. Thus \mathcal{M} is Q -injective-duo- C_{1}-module.

Recall that any module \mathcal{M} is called Hopfian if every surjective f in $\operatorname{End}(\mathcal{M})$ is isomorphism and a non simple module is called anti-Hopfian if proper submodule of \mathcal{M} is a non-Hopfian kernel such that a submodule \mathcal{N} of \mathcal{M} is nonHopfian kernel (for \mathcal{M}) if there exists an isomorohism $\mathcal{M} / \mathcal{N}$ to \mathcal{M} [14]. Or an R-module \mathcal{M} is anti-Hopfian if \mathcal{M} is non simple and all nonzero factor modules of \mathcal{M} are isomorphic to \mathcal{M}; that is for all $\mathcal{N} \leq \mathcal{M}, \mathcal{M} / \mathcal{N} \cong \mathcal{M}[16]$.

Example 3.4. Any module of semisimple Artinian ring with finite length is Hopfian module.
Lemma 3.5. Let \mathcal{M} be an R-module. If \mathcal{M} is anti-Hopfian, then every submodule \mathcal{N} of \mathcal{M} is Q -injective [15].
Theorem 3.6. Let \mathcal{M} be $C_{1}-R$-module. If \mathcal{M} has exactly one non-zero proper submodule and $\mathcal{M}=\mathcal{M}_{1} \oplus \mathcal{M}_{2} \ni \mathcal{M}_{1}, \mathcal{M}_{2}$ are simple modules, then $\mathcal{N} \leq \mathcal{M} \ni \mathcal{N}$ is a Q -injective of \mathcal{M}.
Proof: From [14], \mathcal{M} is anti-Hopfian module. Since \mathcal{M}_{1} and \mathcal{M}_{2} are simple modules, then \mathcal{M} is a simple module and so it is a duo module (\mathcal{N} is a duo submodule). From lemma (3.5), the proof is completed.
Corollary 3.7. Let R be a Dedekind domain, and \mathcal{M} is $C_{l^{-}}$ module with $\operatorname{Rad}(\mathcal{M}) \neq \mathcal{M}$. If $\mathcal{M} \cong R / I^{2} \ni I$ is a non-zero ideal of R and \mathcal{N} is duo submodule of \mathcal{M}, then $\mathcal{N} \leq \mathcal{M}$ is Q injective in C_{l}-module.
Proof: From [14] and Lemma (3.5).

3. CONCLUSIONS

This paper investigated modules having a submodule are duo and Quasi-injective properties. Tow generalization of C_{1} module have been studied. We proved that any module has pseudo-injective, \mathcal{N} is essential in \mathcal{M} and stable, this mean \mathcal{M} is a Quasi-injective-duo- C_{1}-module where R is a Dedekind domain. Also same goal can obtained it if \mathcal{M} is a projective and stable with \mathcal{N} is an essential in \mathcal{M}.

REFERENCES

[1] Sharpe, T., Sharpe, D. W., \& Vámos, P. (1972). Injective modules (Vol. 62). Cambridge University Press.
[2] Johnson, R. E., \& Wong, E. T. (1961). Quasiinjective modules and irreducible rings. Journal of the London Mathematical Society, 1(1), 260-268.
[3] Singh, S., \& Jain, S. K. (1967). On pseudo injective modules and self-pseudo injective rings. J. Math. Sci, 2(1), 125-133.
[4] Mishra, N., \& khedlekar, U. Weak CS-Modules and Finite Direct Sum of Injective Modules. International Journal of Mathematical Archive-8 (1), 2017, 63-64.
[5] Abud, A. H. (2010). S-Quasi-Injective Modules. AlNahrain Journal of Science, 13(4), 194-198.
[6] Singh, S. (1968). On pseudo-injective modules. Riv. Mat. Univ. Parma, 2(9), 59-65.
[7] Singh, S., \& Wason, K. (1970). Pseudo-injective modules over commutative rings. J. Indian Math. Soc, 34(2), 61-66.
[8] Jain, S. K., \& Singh, S. (1975). Quasi-Injective and Pseudo-Infective Modules. Canadian Mathematical Bulletin, 18(3), 359-366.
[9] Ali, I. M. (2016). On Closed Rickart Modules. Iraqi Journal of Science, 57(4B), 2746-2753.
[10]Feigelstock, S. (2006). Divisible is injective. Soochow Journal of Mathematics, 32(2), 241-243.
[11]Kasch, F. (1982). Modules and rings (Vol. 17). Academic press.
[12] Asgari, S., Arabi-Kakavand, M., \& Khabazian, H. (2016). Rings for which every simple module is almost injective. Bulletin of the Iranian Mathematical Society, 42(1), 113-127.
[13]Kara, Y., \& Tercan, A. (2017). Modules which are self-p-injective relative to projection invariant submodules. Analele Universitatii" Ovidius" Constanta-Seria Matematica, 25(1), 117-129.
[14]Hirano, Y., \& Mogani, I. (1986). On restricted antiHopfian modules. Math. J. Okayama Univ, 28, 119131.
[15] Al-Awadi, H.K., Anti-hopfian modules and restricted Anti-hopfian modules, M. Sc. Thesis College of Sci. Uni. of Baghdad (2000).
[16] Oshiro, K. (1984). Lifting modules, extending modules and their applications to QF-rings. Hokkaido Math. J, 13(3), 310-338.

```
حول المقاسات الجزئية شبه الغامرة والثنائية للمقاس من نوع C1
    عبدالسلام فائق طكت و ماجد محمد عبد
    قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة الأنبار، رمادي، العراق
```

 الخلاصة:
 في هذا البحث تم تحقيق المقاس الذي يمنلك مقاسات جزئية شبه غامرة وثنائية. قدمنا تعميم جدبد للمقاس من نوع C1. الطر بقة الرئيسية التي اعتمدت
على كيفية الحصول على مقاس جزئي N في المقاس M له الخاصيتان السابقتان. تحققنا من العلاقة بين المقاس الجزئي شبه الغامر و المقاس الغامر الكاذب
للمقاس الأصلي C1. في نهاية البحث قدمنا العلاقة الجديدة بين المقاس الجزئي شبه الغامر و المقاس من نوع anti-hopfian.

[^0]: *Department of Mathematics / College of Education for Pure Sciences / University of Anbar, Iraq, Tel: +96407804621498

 E-mail address: abd19u2007@uoanbar.edu.iq

