On Q-Injective, Duo Submodules of C₁-Module

Abdulsalam F. Talak^{*}, and Majid Mohammed Abed

Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Ramadi, Iraq

ARTICLE INFO

Received: 1/3/2021 Accepted: 15/4/2021 Available online: 1/6/2021

DOI: 10.37652/juaps.2022.172431

Keywords:

Quasi-injective module, Duo submodule, Stable module, Pseudo-injective module.

Copyright©Authors, 2021, College of Sciences, University of Anbar. This is an open-access article under the CC BY 4.0 license (<u>http://creativecommons.org/licens</u> <u>es/by/4.0/</u>).

1. INTRODUCTION

All the modules in this paper have a unity. Many searchers studied Quasi-injective and injective modules in details. Here we study Quasi-injective of any submodule \mathcal{N} of \mathcal{M} . In [1], An R-module P is a projective module if there exists an Rmodule Q such that $P \oplus Q$ is a free *R*-module; also more details about injective and projective module can find it in same reference. In [2], we can find the definition of a Quasiinjective module (briefly Q-injective). Also, in [3], the author said \mathcal{M} is pseudo-injective module (p-injective module) if $\forall \mathcal{N} \leq \mathcal{M}$, each *R*-isomorphism $q: \mathcal{N} \rightarrow \mathcal{M}$ can be extended to an R-endomorphism of \mathcal{M} . In [4], A module \mathcal{M} is called uniform if \mathcal{N}_1 and \mathcal{N}_2 are non-zero submodules of \mathcal{M} ; $\mathcal{N}_1 \cap$ $\mathcal{N}_2 \neq 0$ the intersection of any two non-zero submodules is nonzero, equivalently, \mathcal{M} is uniform if $0 \neq \mathcal{N} \leq_{ess} \mathcal{M}$. In [5], $\mathcal{N} \leq \mathcal{M}$ is called stable if for each *R*-homomorphism $f: \mathcal{N} \to \mathcal{M}$ implies $f(\mathcal{N}) \subseteq \mathcal{N}$, and an *R*-module \mathcal{M} is called fully stable in case every submodule of \mathcal{M} is stable.

ABSTRACT

This note investigates modules having quasi-injective and duo submodules. We introduce a new generalization of C_1 -module. The main method that was adopted in this generalization is how to obtain a submodule \mathcal{N} in \mathcal{M} having the characteristic Quasi-injective. We investigate the relationship between pseudo-injective module and Quasi-injective property of C_1 -module. Finally, we introduce a new relationship between Quasi-injective submodule and anti-hopfian module.

In this article, we investigate some facts about any submodule \mathcal{N} of C_1 -module \mathcal{M} like Q-injective and duo properties. Also we use other properties in order to satisfy the same goal such as hopfian, anti-hopfian and self-injective modules.

2.PSEUDO-INJECTIVE and QUASI-INJECTIVE SUBMODULES

In this section, we will study two important properties of submodule \mathcal{N} of \mathcal{M} namely Quasi-injective and P-injective. Via this submodule, we obtain a new characterization of C_1 -module. Moreover; we should provide another property namely fully invariant of this submodule. Note that Q-injective itself injective.

Definition 2.1. [1]. An *R*-module \mathcal{M} is called injective if for every monomorphism $h: \mathcal{M}_1 \to \mathcal{M}_2$ and homomorphism $f: \mathcal{M}_1 \to \mathcal{M}_3$ there exists a homomorphism $g: \mathcal{M}_2 \to \mathcal{M}_3$ such that $g \circ h = f$.

Definition 2.2. [2]. Let \mathcal{M} be an *R*-module. Then \mathcal{M} is said to be Q-injective if for each submodule \mathcal{N} of \mathcal{M} and *R*-homomorphism $f: \mathcal{N} \to \mathcal{M}$ can be extended to an *R*-endomorphism of \mathcal{M} .

Definition 2.3. [3]. An *R*-module \mathcal{M} is called pseudoinjective, if for every submodule \mathcal{N} of \mathcal{M} , each *R*-

^{*}Department of Mathematics / College of Education for Pure Sciences / University of Anbar, Iraq, Tel: +96407804621498

E-mail address: abd19u2007@uoanbar.edu.iq

isomorphism $g: \mathcal{N} \to \mathcal{M}$ can be extended to an *R*-endomorphism of \mathcal{M} .

Lemma 2.4. [6]. Let \mathcal{M} be an *R*-module over P.I.D. If \mathcal{M} is pseudo-injective module, so it is a Q-injective.

Now we need to find a submodule \mathcal{N} of \mathcal{M} such that \mathcal{N} is a Q-injective with invariant property. From [3], any pseudo-injective module over P.I.D is a Q-injective; this means if \mathcal{M} is a module on P.I.D, so $\mathcal{N} \leq \mathcal{M}$ on P.I.D, but \mathcal{M} is pseudo-injective; \mathcal{N} is a pseudo-injective and hence \mathcal{N} is a Q-injective.

Note that to understanding lemma (2.4), we can see [7].

The following theorem explain the relationship between pseudo-injective and C_1 -module over P.I.D.

Theorem 2.5. Let a ring R be a P.I.D. If \mathcal{M} is a pseudoinjective C_1 -module over R, then any submodule $\mathcal{N} \leq \mathcal{M}$ is a Q-injective and $f(\mathcal{N}) \subseteq \mathcal{N}$; so \mathcal{M} is Q-injective-duo- C_1 module.

Proof: Suppose that a module \mathcal{M} is pseudo-injective. Let us take $\mathcal{N} \leq \mathcal{M}$. We have \mathcal{M} any module on P.I.D So also $\mathcal{N} \leq \mathcal{M}$ on P.I.D. But \mathcal{M} is pseudo-injective, then \mathcal{N} is pseudo-injective over P.I.D. Hence \mathcal{N} is Q-injective with $f(\mathcal{N}) \subseteq \mathcal{N}$ imply \mathcal{N} is fully invariant (duo) submodule of \mathcal{M} . Thus \mathcal{M} is Q-injective-duo- C_1 -module.

Now we introduce another way to obtain any submodule \mathcal{N} of C_1 -module \mathcal{M} and be Q-injective. This way depends on new domain namely Dedekind domain. (*R* is a Dedekind domain if it is integrally closed, Noetherian and if $0 \neq p$ is a maximal; p is prime ideal). So if *R* is a Dedekind domain, then it is a UFD if and only if *R* is P.I.D. See the next Lemma:

Lemma 2.6. [7]. Let \mathcal{M} be an *R*-module over Dedekind domain. If \mathcal{M} is pseudo-injective (P-injective), then \mathcal{M} is a Q-injective and so $\mathcal{N} \leq \mathcal{M}$ is a Q-injective submodule.

Theorem 2.7. Let \mathcal{M} be a Pseudo-injective- C_1 -module over Dedekind domain. If \mathcal{M} is stable, then \mathcal{M} is Q-injective -duo- C_1 -module.

Proof: Assume that a module \mathcal{M} is Pseudo-injective and R is a Dedekind domain. From lemma (2.6), \mathcal{M} is a Q-injective. So $\mathcal{N} \leq \mathcal{M}$ is also Q-injective. But \mathcal{M} is stable, so \mathcal{N} is a fully invariant. Therefore \mathcal{N} is a duo submodule of \mathcal{M} .

Lemma 2.8. [7]. Let \mathcal{M} be an *R*-module. If the following statements are true:

(1)- *R* is Multiplication ring;

(2)- \mathcal{M} is P-injective;

(3)- $T(\mathcal{M}) = \mathcal{M};$

then \mathcal{M} is Q-injective and so \mathcal{N} is also Q-injective.

Theorem 2.9. Let \mathcal{M} be a module over a ring R. If:

(1)- *R* is multiplication ring;

- (2)- $T(\mathcal{M}) = \mathcal{M};$
- (3)- \mathcal{M} is stable;
- (4)- \mathcal{M} is D_1 -module and Pseudo-injective;

then \mathcal{M} is Q-injective-duo- C_1 -module.

Proof: Assume that $T(\mathcal{M}) = \mathcal{M}$ and R is a multiplication ring. Then from [8], $T(\mathcal{N}) = \mathcal{N}$ (any submodule of torsion module is torsion). Since \mathcal{M} is P-injective, then \mathcal{M} is a Q-injective and hence \mathcal{N} is P-injective and $T(\mathcal{N}) = \mathcal{N} \ni \mathcal{N} \le \mathcal{M}$. Hence \mathcal{N} is a Q-injective. Since \mathcal{M} is stable, then \mathcal{N} is a fully invariant. But from condition (4), \mathcal{M} is C_1 - module. Then \mathcal{M} is a Q-injective-duo- C_1 -module.

Corollary 2.10. If \mathcal{M} is C_1 -pseudo-injective R-module, then \mathcal{M} is Q-injective-duo- C_1 -module, knowing that $f(\mathcal{N}) \subseteq \mathcal{N}$ and $T(\mathcal{M}) = \mathcal{M}$.

Recall that any *R*-module \mathcal{M} is called nonsingular if, for all $m \in \mathcal{M}$ with $r(m) \leq_{ess} R$ implies that m = 0. Or $Z(\mathcal{M}) = \{x \in \mathcal{M}; \exists a right an ideal I of R such that <math>I \leq_{ess} R$ and $XI = 0\}$ ($Z(\mathcal{M}) = 0$) [9].

Lemma 2.11. If $\mathcal{N} \leq_{\text{ess}} \mathcal{M}$ and $Z(\mathcal{M}) = 0$ in pseudoinjective module \mathcal{M} , then \mathcal{N} is Q-injective.

Proof: Let $\mathcal{N} \leq_{\text{ess}} \mathcal{M}$ and $Z(\mathcal{M}) = 0$. Let $g: \mathcal{N} \to \mathcal{M}$ be an *R*-homomorphism. So Ker(g) = 0 or $Ker(g) = \mathcal{N}$. Suppose that $Ker(g) = \mathcal{N}$, so g can be extended to homomorphism $h: \mathcal{M} \to \mathcal{M}$. Now if Ker(g) = 0, so g is one to one and can be extended to *R*-homomorphism from $\mathcal{M} \to \mathcal{M}$ (\mathcal{M} is Pseudo-injective). Hence \mathcal{N} is Q-injective.

Corollary 2.12. Let \mathcal{M} be a C_1 -pseudo-injective R-module. If $f(\mathcal{N}) \subseteq \mathcal{N}, \ \mathcal{N} \leq_{ess} \mathcal{M}$ and $Z(\mathcal{M}) = 0$; then \mathcal{M} is Q-injective-duo- C_1 -module.

Now we present another way in order to obtain that any submodule $\mathcal{N} \leq \mathcal{M}$ is a Q-injective. But before that we need to present some important definitions that are closely related to the mentioned way. Firstly, a concept of Stable-Q-injective was explained in [6].

Let $\phi: \mathcal{N} \to M \ni \phi(\mathcal{N}) \subseteq \mathcal{N}$. Then \mathcal{M} is called stable module. So if every $\mathcal{N} \leq \mathcal{M}$ is stable this means \mathcal{M} is fully stable module (F-stable).

If $\mathcal{N} \leq \mathcal{M}$ is stable and can be extended R-homomorphism $(\mathcal{N} \to \mathcal{M})$ to an *R*-endomorphism $(\mathcal{M} \to \mathcal{M})$, then \mathcal{M} is called stable-Q-injective *R*-module. Also, If *R* is an integral domain and \mathcal{M} is an *R*-module, then an element $x \in \mathcal{M}$ is called torsion element if $\exists 0 \neq r \in R \ni rx = 0$. [10]. So we define:

 $T(\mathcal{M}) = \{ x \in \mathcal{M}; x \text{ is a torsion element} \}.$

Open Access

п

Note that:

- 1. If $T(\mathcal{M}) = \mathcal{M}$, then a module \mathcal{M} is called torsion-module.
- 2. If $T(\mathcal{M}) = 0$, then a module \mathcal{M} is called torsion-free-module.

Lemma 2.13. [6]. Let \mathcal{M} be a stable-Q-injective *R*-module. If \mathcal{M} is an injective *R*-module, then it is Q-injective.

Theorem 2.14. Let \mathcal{M} be a C_1 -module. If \mathcal{M} is a F-stable and stable-Q-injective; then \mathcal{M} is Q-injective-duo- C_1 -module.

Proof: Let $\mathcal{N} \leq \mathcal{M}$ and let $\phi: \mathcal{N} \to \mathcal{M}$ be an *R*-homomorphism of \mathcal{M} . So \mathcal{N} is a stable because \mathcal{M} is a F-stable. But from stable-Q-injective of \mathcal{M} , there is an $\varphi: \mathcal{M} \to \mathcal{M} \ni \varphi$ extends ϕ . Hence \mathcal{M} is a Q-injective. Thus \mathcal{M} is Q-injective-duo- C_1 -module.

Corollary 2.15. Let \mathcal{M} be a C_1 -module. If $\mathcal{N} \leq \mathcal{M}$; $\varphi(\mathcal{N}) \subseteq \mathcal{N} \ni \varphi: \mathcal{N} \to \mathcal{M}$ be a homomorphism and $\mathcal{M} = \mathcal{M}_1 \bigoplus \mathcal{M}_2$ is a stable-Q-injective, then \mathcal{M} is Q-injective-duo- C_1 -module. **Proof:** By Theorem (2.14).

Remark 2.16. From definition of fully invariant submodule and definition of stable, we find the two meanings are same.

Recall that a ring R is called Quasi-Frobenius (QF-ring) if every projective module is injective; or every injective module is discrete. From [11], every projective-module is injective and then every injective-module is Q-injective.

Corollary 2.17. Let \mathcal{M} be a C_1 -module over QF-ring. If \mathcal{M} is a projective module and stable in R, then \mathcal{M} is Q-injective-duo- C_1 -module (\mathcal{N} is Q-injective submodule).

Proof: Let *R* be a QF-ring. Since \mathcal{M} is a projective *R*-module, then \mathcal{M} is an injective module and hence Q-injective. Therefore any submodule \mathcal{N} of \mathcal{M} is Q-injective. Note that \mathcal{M} is stable module; so for $\varphi: \mathcal{N} \to \mathcal{M}$ be a homo. we get $\varphi(\mathcal{N}) \subseteq \mathcal{N}$. Thus \mathcal{M} is Q-injective-duo- C_1 -module.

Recall that a module \mathcal{M} is called D_1 -module if for $\mathcal{N} < \mathcal{M}$, $\exists \mathcal{M} = \mathcal{M}_1 \bigoplus \mathcal{M}_2$ is a coessential sub of \mathcal{N} ; or if $\mathcal{N}, K \leq \mathcal{M}$ and $H \leq \mathcal{N}$, then $\mathcal{M} = H \bigoplus K$ and $\mathcal{N} \cap H \leq \mathcal{M}$. So D_1 -module is extending.

Proposition 2.18. Let \mathcal{M} be an *R*-module over QF-ring *R*. If:

(1)- \mathcal{M} is D_1 -module;

(2)- \mathcal{M} is stable module;

(3)- \mathcal{M} is a free-module;

then \mathcal{M} is Q-injective-duo- C_1 -module.

Proof: From condition (1); \mathcal{M} is C_1 -module. From condition (2); \exists an *R*-homomorphism $\varphi: \mathcal{N} \to \mathcal{M} \ni \varphi(\mathcal{N}) \subseteq \mathcal{N}$ (\mathcal{N} is fully invariant). So \mathcal{N} is a duo submodule. Condition (3); gives \mathcal{M} is a free-module. So if we take *F* is a free-*R*-module

on a set S. Suppose that $\mathcal{N}_1, \mathcal{N}_2$ two modules over the ring *R*. Let $\varphi: \mathcal{N}_1 \to \mathcal{N}_2$ is a homomorphism.

 $\forall x \in S; we choose a_x \in \mathcal{N}_1 \ni j(x) = a_x \dots \dots (1)$ Also,

 $\forall x \in F, g(x) \in \mathcal{N}_2 \text{ and } \varphi: \mathcal{N}_1 \to \mathcal{N}_2 \text{ is onto.}$

Then

$$\exists a_x \in \mathcal{N}_1 \ni \varphi(a_x) = g(x) \dots \dots \dots (2)$$

Since *F* is a free-*R*-module on S, \exists a unique homomorphism $h: F \to \mathcal{N}_1 \ni h \circ i = j \dots \dots (3)$

rove that
$$\varphi \circ h = g$$
. Let $x \in F$. So
 $x = \sum r_k x_k; x_k \in S, r_k \in R; k = 1, 2,,$

(because F is generated by s
$$F = \langle s \rangle$$
).

Now

Now

To p

$$\begin{aligned} (\varphi \circ h)(x) &= (\varphi \circ h)(\sum r_k x_k) \\ &= \varphi \left(h(\sum r_k x_k) \right) \\ &= \varphi(\sum r_k h(x_k)), \end{aligned}$$

h is homomorphism.

$$= \varphi(\sum r_k(h(i(x_k))))$$

$$\begin{aligned} (\varphi \circ h) &= \varphi(\sum r_k((h \circ i)(x_k))) \,. \\ &= \varphi(\sum r_k(j(x_k))) \,; \, (by \, (3)). \\ &= \varphi(\sum r_k a_{x_k}) \,; \, (by \, (1)). \\ &= \sum r_k \, \varphi(a_{x_k}) \,; \, \varphi \text{ homomorphism.} \\ &= \sum r_k g(x_k) \,; \, (by \, (2)). \\ &= g(\sum r_k x_k). \end{aligned}$$

g homomorphism. So $\varphi \circ h = g$. Thus \mathcal{M} is a projective and hence \mathcal{M} is injective (\mathcal{M} is a Q-injective). Then $\mathcal{N} \leq \mathcal{M}$ is Q-injective. Thus \mathcal{M} is a Q-injective-duo- C_1 -module.

Lemma 2.19. For a ring R, we have R_R is a semi-simple if and only if R is a semisimple and so any module \mathcal{M} over R is a semisimple module.

Proof: We need to prove the following,

- 1. R_R semisimple if and only if R is semisimple.
- 2. \mathcal{M} is a semisimple module over R.

From [11], we can get the proof of (1).

Now we need to proof (2):

If R_R is a semisimple and if $\mathcal{M} = \mathcal{M}_R \ni m \in \mathcal{M}$, then *R* is a semisimple as an epimorphic image of R_R . So

 $\mathcal{M} = \sum mR, m \in \mathcal{M}$ as a sum of semisimple module is again semisimple.

Lemma 2.20. Let a ring *R* be a semisimple, and \mathcal{M} be an *R*-module. Then every submodule $\mathcal{N} \leq \mathcal{M}$ is Q-injective.

Proof: Since *R* is a semisimple ring, then every module \mathcal{M} over *R* is a semisimple. So $\mathcal{N} \leq \mathcal{M}$ is a direct summand. Hence \mathcal{M} is injective *R*-module. But every injective *R*-module is a Q-injective. Thus \mathcal{N} is Q-injective.

Theorem 2.21. Let R be a semisimple ring and \mathcal{M} is an R-module. If \mathcal{M} is D_1 -module and stable; then it is Q-injective-duo- C_1 -module.

Proof: It is clear that from lemma (2.20), $\mathcal{N} \leq \mathcal{M}$ is Q-injective. But \mathcal{M} is a stable, then $\exists f: \mathcal{N} \to \mathcal{M} \ni f(\mathcal{N}) \subseteq \mathcal{N}$. So \mathcal{N} is a fully invariant and hence \mathcal{M} is a duo (\mathcal{N} is a duo submodule). We have \mathcal{M} is D_1 -module. So it is C_1 -module. Thus \mathcal{N} is Q-injective of \mathcal{M} .

Corollary 2.22. Let \mathcal{M} be an *R*-module. If:

- (1)- \mathcal{M} is projective module;
- (2)- \mathcal{M} is a simple module;
- (3)- \mathcal{M} is Q-injective;

then \mathcal{N} is Q-injective and duo submodule of C_1 -module.

Proof: It is clear that projective module means C_1 -module. Also, if a module \mathcal{M} is simple, then \mathcal{M} is duo-module. ($\mathcal{N} \leq \mathcal{M} \ni \mathcal{N}$ is fully invariant; $f(\mathcal{N}) \subseteq \mathcal{N}$ and $f: \mathcal{N} \to \mathcal{M}$ is an R-homomorphism). Now from condition (3), we have \mathcal{M} is Quasi-projective. So \mathcal{M} is a Q-injective and hence \mathcal{N} is a Q-injective of C_1 -module.

Recall that any ring R is called V-ring if every simple R-module is injective [12].

Corollary 2.23. Let \mathcal{M} be a D_1 -R-module over V-ring. Then \mathcal{M} is Q-injective-duo- C_1 -module.

2.HOPFIAN, SELF-INJECTIVE MODULES AND Q-INJECTIVE SUBMODULE

From [13], a module \mathcal{M} is called self-p-injective if \mathcal{M} satisfy the following condition; every homomorphism from a projection invariant submodule of \mathcal{M} to \mathcal{M} can be lifted to \mathcal{M} .

(#) Every self-injective is injective module.

Definition 3.1. Any *R*-module \mathcal{M} is called indecomposable if \mathcal{M} has no proper non trivial complement submodule \mathcal{M}_1 $(\mathcal{M} = \mathcal{M}_1 \bigoplus \mathcal{M}_2$, so $\mathcal{M}_1 = 0$ or $\mathcal{M}_1 = \mathcal{M}$).

Example 3.2. Z is indecomposable Z - module, but Z is not simple Z - module (Z contains proper submodule 2Z).

Therefore, every simple module is indecomposable, but the converse is not true.

Theorem 3.3. Let \mathcal{M} be an indecomposable self-P-injective *R*-module. Then any C_1 - module is Q-injective-duo- C_1 - module.

Proof: From definition of self-p-injective, there exists K submodule of \mathcal{M} such that K is fully invariant. Assume that \mathcal{M} is indecomposable module, so every submodule of \mathcal{M} is projective invariant. Then \mathcal{M} is Q-injective. Thus \mathcal{M} is Q-injective-duo- C_1 -module.

Recall that any module \mathcal{M} is called Hopfian if every surjective f in $End(\mathcal{M})$ is isomorphism and a non simple module is called anti-Hopfian if proper submodule of \mathcal{M} is a non-Hopfian kernel such that a submodule \mathcal{N} of \mathcal{M} is non-Hopfian kernel (for \mathcal{M}) if there exists an isomorohism \mathcal{M}/\mathcal{N} to \mathcal{M} [14]. Or an *R*-module \mathcal{M} is anti-Hopfian if \mathcal{M} is non simple and all nonzero factor modules of \mathcal{M} are isomorphic to \mathcal{M} ; that is for all $\mathcal{N} \leq \mathcal{M}, \mathcal{M}/\mathcal{N} \cong \mathcal{M}$ [16].

Example 3.4. Any module of semisimple Artinian ring with finite length is Hopfian module.

Lemma 3.5. Let \mathcal{M} be an *R*-module. If \mathcal{M} is anti-Hopfian, then every submodule \mathcal{N} of \mathcal{M} is Q-injective [15].

Theorem 3.6. Let \mathcal{M} be C_l -R-module. If \mathcal{M} has exactly one non-zero proper submodule and $\mathcal{M} = \mathcal{M}_1 \bigoplus \mathcal{M}_2 \ni \mathcal{M}_1, \mathcal{M}_2$ are simple modules, then $\mathcal{N} \leq \mathcal{M} \ni \mathcal{N}$ is a Q-injective of \mathcal{M} .

Proof: From [14], \mathcal{M} is anti-Hopfian module. Since \mathcal{M}_1 and \mathcal{M}_2 are simple modules, then \mathcal{M} is a simple module and so it is a duo module (\mathcal{N} is a duo submodule). From lemma (3.5), the proof is completed.

Corollary 3.7. Let *R* be a Dedekind domain, and \mathcal{M} is C_{l} -module with $Rad(\mathcal{M}) \neq \mathcal{M}$. If $\mathcal{M} \cong R/l^2 \ni l$ is a non-zero ideal of *R* and \mathcal{N} is duo submodule of \mathcal{M} , then $\mathcal{N} \leq \mathcal{M}$ is Q-injective in C_l -module.

Proof: From [14] and Lemma (3.5).

3. CONCLUSIONS

This paper investigated modules having a submodule are duo and Quasi-injective properties. Tow generalization of C_1 module have been studied. We proved that any module has pseudo-injective, \mathcal{N} is essential in \mathcal{M} and stable, this mean \mathcal{M} is a Quasi-injective-duo- C_1 -module where R is a Dedekind domain. Also same goal can obtained it if \mathcal{M} is a projective and stable with \mathcal{N} is an essential in \mathcal{M} .

REFERENCES

 Sharpe, T., Sharpe, D. W., & Vámos, P. (1972). Injective modules (Vol. 62). Cambridge University Press.

- [2] Johnson, R. E., & Wong, E. T. (1961). Quasiinjective modules and irreducible rings. Journal of the London Mathematical Society, 1(1), 260-268.
- [3] Singh, S., & Jain, S. K. (1967). On pseudo injective modules and self-pseudo injective rings. J. Math. Sci, 2(1), 125-133.
- [4] Mishra, N., & khedlekar, U. Weak CS-Modules and Finite Direct Sum of Injective Modules. International Journal of Mathematical Archive-8 (1), 2017, 63-64.
- [5] Abud, A. H. (2010). S-Quasi-Injective Modules. Al-Nahrain Journal of Science, 13(4), 194-198.
- [6] Singh, S. (1968). On pseudo-injective modules. Riv. Mat. Univ. Parma, 2(9), 59-65.
- [7] Singh, S., & Wason, K. (1970). Pseudo-injective modules over commutative rings. J. Indian Math. Soc, 34(2), 61-66.
- [8] Jain, S. K., & Singh, S. (1975). Quasi-Injective and Pseudo-Infective Modules. Canadian Mathematical Bulletin, 18(3), 359-366.
- [9] Ali, I. M. (2016). On Closed Rickart Modules. Iraqi Journal of Science, 57(4B), 2746-2753.
- [10] Feigelstock, S. (2006). Divisible is injective. Soochow Journal of Mathematics, 32(2), 241-243.
- [11] Kasch, F. (1982). Modules and rings (Vol. 17). Academic press.
- [12] Asgari, S., Arabi-Kakavand, M., & Khabazian, H. (2016). Rings for which every simple module is almost injective. Bulletin of the Iranian Mathematical Society, 42(1), 113-127.
- [13] Kara, Y., & Tercan, A. (2017). Modules which are self-p-injective relative to projection invariant submodules. Analele Universitatii" Ovidius" Constanta-Seria Matematica, 25(1), 117-129.

- [14] Hirano, Y., & Mogani, I. (1986). On restricted anti-Hopfian modules. Math. J. Okayama Univ, 28, 119-131.
- [15] Al-Awadi, H.K., Anti-hopfian modules and restricted Anti-hopfian modules, M. Sc. Thesis College of Sci. Uni. of Baghdad (2000).
- [16] Oshiro, K. (1984). Lifting modules, extending modules and their applications to QF-rings. Hokkaido Math. J, 13(3), 310-338.

حول المقاسات الجزئية شبه الغامرة والثنائية للمقاس من نوع C1

عبدالسلام فائق طلك وماجد محمد عبد

قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة الأنبار، رمادي، العراق

الخلاصة:

في هذا البحث تم تحقيق المقاس الذي يمتلك مقاسات جزئية شبه غامرة وثنائية. قدمنا تعميم جديد للمقاس من نوع C₁. الطريقة الرئيسية التي اعتمدت على كيفية الحصول على مقاس جزئي N في المقاس M له الخاصيتان السابقتان. تحققنا من العلاقة بين المقاس الجزئي شبه الغامر والمقاس الغامر الكاذب للمقاس الأصلي C₁. في نهاية البحث قدمنا العلاقة الجديدة بين المقاس الجزئي شبه الغامر والمقاس من نوع anti-hopfian.