On Q-Injective, Duo Submodules of C₁-Module
Abdulsalam F. Talak*, and Majid Mohammed Abed
Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Ramadi, Iraq

ARTICLE INFO
Received: 1/3/2021
Accepted: 15/4/2021
Available online: 1/6/2021
DOI: 10.37652/juaps.2022.172431
Keywords:
Quasi-injective module,
Duo submodule, Stable module,
Pseudo-injective module.

ABSTRACT
This note investigates modules having quasi-injective and duo submodules. We introduce a new generalization of C₁-module. The main method that was adopted in this generalization is how to obtain a submodule N in M having the characteristic Quasi-injective. We investigate the relationship between pseudo-injective module and Quasi-injective property of C₁-module. Finally, we introduce a new relationship between Quasi-injective submodule and anti-hopfian module.

1. INTRODUCTION
All the modules in this paper have a unity. Many searchers studied Quasi-injective and injective modules in details. Here we study Quasi-injective of any submodule N of M. In [1], An R-module P is a projective module if there exists an R-module Q such that P ⊕ Q is a free R-module; also more details about injective and projective module can find it in same reference. In [2], we can find the definition of a Quasi-injective module (briefly Q-injective). Also, in [3], the author said M is pseudo-injective module (p-injective module) if ∀ N ≤ M, each R-isomorphism g: N → M can be extended to an R-endomorphism of M. In [4], A module M is called uniform if N₁ and N₂ are non-zero submodules of M; N₁ ∩ N₂ ≠ 0 the intersection of any two non-zero submodules is nonzero, equivalently, M is uniform if 0 ≠ N ≤ ess M. In [5], N ≤ M is called stable if for each R-homomorphism f: N → M implies f(N) ⊆ N, and an R-module M is called fully stable in case every submodule of M is stable.

In this article, we investigate some facts about any submodule N of C₁-module M like Q-injective and duo properties. Also we use other properties in order to satisfy the same goal such as hopfian, anti-hopfian and self-injective modules.

2. PSEUDO-INJECTIVE and QUASI-INJECTIVE SUBMODULES
In this section, we will study two important properties of submodule N of M namely Quasi-injective and P-injective. Via this submodule, we obtain a new characterization of C₁-module. Moreover, we should provide another property namely fully invariant of this submodule. Note that Q-injective itself injective.

Definition 2.1. [1]. An R-module M is called injective if for every monomorphism h: M₁ → M₂ and homomorphism f: M₁ → M₃ there exists a homomorphism g: M₂ → M₃ such that g ∘ h = f.

Definition 2.2. [2]. Let M be an R-module. Then M is said to be Q-injective if for each submodule N of M and R-homomorphism f: N → M can be extended to an R-endomorphism of M.

Definition 2.3. [3]. An R-module M is called pseudo-injective, if for every submodule N of M, each R-
isomorphism \(g: \mathcal{N} \to \mathcal{M} \) can be extended to an \(R \)-endomorphism of \(\mathcal{M} \).

Lemma 2.4. [6]. Let \(\mathcal{M} \) be an \(R \)-module over P.I.D. If \(\mathcal{M} \) is pseudo-injective module, so it is a Q-injective.

Now we need to find a submodule \(\mathcal{N} \) of \(\mathcal{M} \) such that \(\mathcal{N} \) is a Q-injective with invariant property. From [3], any pseudo-injective module over P.I.D is a Q-injective; this means if \(\mathcal{M} \) is a module on P.I.D, so \(\mathcal{N} \leq \mathcal{M} \) on P.I.D, but \(\mathcal{M} \) is pseudo-injective; \(\mathcal{N} \) is a pseudo-injective and hence \(\mathcal{N} \) is a Q-injective.

Note that to understanding lemma (2.4), we can see [7].

The following theorem explain the relationship between pseudo-injective and \(C_1 \)-module over P.I.D.

Theorem 2.5. Let a ring \(R \) be a P.I.D If \(\mathcal{M} \) is a pseudo-injective \(C_1 \)-module over \(R \), then any submodule \(\mathcal{N} \leq \mathcal{M} \) is a Q-injective and \(f(\mathcal{N}) \subseteq \mathcal{N} \); so \(\mathcal{M} \) is Q-injective-duo-\(C_1 \)-module.

Proof: Suppose that a module \(\mathcal{M} \) is pseudo-injective. Let us take \(\mathcal{N} \leq \mathcal{M} \). We have \(\mathcal{M} \) any module on P.I.D So also \(\mathcal{N} \leq \mathcal{M} \) on P.I.D. But \(\mathcal{M} \) is pseudo-injective, then \(\mathcal{N} \) is pseudo-injective over P.I.D. Hence \(\mathcal{N} \) is Q-injective with \(f(\mathcal{N}) \subseteq \mathcal{N} \) imply \(\mathcal{N} \) is fully invariant (duo submodule of \(\mathcal{M} \). Thus \(\mathcal{M} \) is Q-injective-duo-\(C_1 \)-module.

Now we introduce another way to obtain any submodule \(\mathcal{N} \) of \(C_1 \)-module \(\mathcal{M} \) and be Q-injective. This way depends on new domain namely Dedekind domain. (\(R \) is a Dedekind domain if it is integrally closed, Noetherian and if \(0 \neq p \) is a maximal; \(p \) is prime ideal). So if \(R \) is a Dedekind domain, then it is a UFD if and only if \(R \) is P.I.D. See the next Lemma:

Lemma 2.6. [7]. Let \(\mathcal{M} \) be an \(R \)-module over Dedekind domain. If \(\mathcal{M} \) is pseudo-injective (P-injective), then \(\mathcal{M} \) is a Q-injective and so \(\mathcal{N} \leq \mathcal{M} \) is a Q-injective submodule.

Theorem 2.7. Let \(\mathcal{M} \) be a Pseudo-injective- \(C_1 \)-module over Dedekind domain. If \(\mathcal{M} \) is stable, then \(\mathcal{M} \) is Q-injective -duo-\(C_1 \)-module.

Proof: Assume that a module \(\mathcal{M} \) is Pseudo-injective and \(R \) is a Dedekind domain. From lemma (2.6), \(\mathcal{M} \) is a Q-injective. So \(\mathcal{N} \leq \mathcal{M} \) is also Q-injective. But \(\mathcal{M} \) is stable, so \(\mathcal{N} \) is a fully invariant. Therefore \(\mathcal{N} \) is a duo submodule of \(\mathcal{M} \).

Lemma 2.8. [7]. Let \(\mathcal{M} \) be an \(R \)-module. If the following statements are true:

1. \(\mathcal{N} \) is a Multiplication ring;
2. \(\mathcal{M} \) is P-injective;
3. \(T(\mathcal{M}) = \mathcal{M} \);

then \(\mathcal{M} \) is Q-injective and so \(\mathcal{N} \) is also Q-injective.

Theorem 2.9. Let \(\mathcal{M} \) be a module over a ring \(R \). If:

1. \(\mathcal{M} \) is a multiplication ring;
2. \(T(\mathcal{M}) = \mathcal{M} \);
3. \(\mathcal{M} \) is stable;
4. \(\mathcal{M} \) is \(D_1 \)-module and Pseudo-injective;

then \(\mathcal{M} \) is Q-injective-duo-\(C_1 \)-module.

Proof: Assume that \(T(\mathcal{M}) = \mathcal{M} \) and \(R \) is a multiplication ring. Then from [8], \(T(\mathcal{N}) = \mathcal{N} \) (any submodule of torsion module is torsion). Since \(\mathcal{M} \) is P-injective, then \(\mathcal{M} \) is a Q-injective and hence \(\mathcal{N} \) is P-injective and \(T(\mathcal{N}) = \mathcal{N} \). Hence \(\mathcal{N} \) is a Q-injective. Since \(\mathcal{M} \) is stable, then \(\mathcal{N} \) is a fully invariant. But from condition (4), \(\mathcal{M} \) is \(C_1 \)-module. Then \(\mathcal{M} \) is a Q-injective-duo-\(C_1 \)-module.

Corollary 2.10. If \(\mathcal{M} \) is a \(C_1 \)-pseudo-injective R-module, then \(\mathcal{M} \) is a Q-injective-duo-\(C_1 \)-module, knowing that \(f(\mathcal{N}) \subseteq \mathcal{N} \) and \(T(\mathcal{M}) = \mathcal{M} \).

Recall that any \(R \)-module \(\mathcal{M} \) is called nonsingular if, for all \(m \in \mathcal{M} \) with \(r(m) \leq \text{ess} \) \(R \) implies that \(m = 0 \). Or \(Z(\mathcal{M}) = \{ x \in \mathcal{M}; \exists \text{ a right ideal } I \text{ of } R \text{ such that } I \leq \text{ess} \text{ and } X = 0 \} \) and \(Z(\mathcal{M}) = 0 \) [9].

Lemma 2.11. If \(\mathcal{N} \leq \text{ess} \mathcal{M} \) and \(Z(\mathcal{M}) = 0 \) in pseudo-injective module \(\mathcal{M} \), then \(\mathcal{N} \) is Q-injective.

Proof: Let \(\mathcal{N} \leq \text{ess} \mathcal{M} \) and \(Z(\mathcal{M}) = 0 \). Let \(g: \mathcal{N} \to \mathcal{M} \) be an \(R \)-homomorphism. So \(\text{Ker}(g) = 0 \) or \(\text{Ker}(g) = \mathcal{N} \). Suppose that \(\text{Ker}(g) = \mathcal{N} \), so \(g \) can be extended to homomorphism \(h: \mathcal{M} \to \mathcal{M} \). Now if \(\text{Ker}(g) = 0 \), so \(g \) is one to one and can be extended to \(R \)-homomorphism from \(\mathcal{M} \to \mathcal{M} \) (\(\mathcal{M} \) is Pseudo-injective). Hence \(\mathcal{N} \) is Q-injective.

Corollary 2.12. Let \(\mathcal{M} \) be a \(C_1 \)-pseudo-injective R-module. If \(f(\mathcal{N}) \subseteq \mathcal{N} \), \(\mathcal{N} \leq \text{ess} \mathcal{M} \) and \(Z(\mathcal{M}) = 0 \); then \(\mathcal{M} \) is Q-injective-duo-\(C_1 \)-module.

Now we present another way in order to obtain that any submodule \(\mathcal{N} \leq \mathcal{M} \) is a Q-injective. But before that we need to present some important definitions that are closely related to the mentioned way. Firstly, a concept of Stable-Q-injective was explained in [6]. Let \(\phi: \mathcal{N} \to \mathcal{M} \) and \(\phi(\mathcal{N}) \subseteq \mathcal{N} \). Then \(\mathcal{M} \) is called stable module. So if every \(\mathcal{N} \leq \mathcal{M} \) is stable this means \(\mathcal{M} \) is fully stable module (F-stable).

If \(\mathcal{N} \leq \mathcal{M} \) is stable and can be extended R-homomorphism \((\mathcal{N} \to \mathcal{M}) \) to an \(R \)-endomorphism \((\mathcal{M} \to \mathcal{M}) \), then \(\mathcal{M} \) is called stable-Q-injective R-module. Also, If \(R \) is an integral domain and \(\mathcal{M} \) is an R-module, then an element \(x \in \mathcal{M} \) is called torsion element if \(\exists 0 \neq r \in R \exists rx = 0 \). [10]. So we define:

\[
T(\mathcal{M}) = \{ x \in \mathcal{M}; x \text{ is a torsion element} \}.
\]
Note that:

1. If \(T(M) = M \), then a module \(M \) is called torsion-module.
2. If \(T(M) = 0 \), then a module \(M \) is called torsion-free-module.

Lemma 2.13. [6]. Let \(M \) be a stable-Q-injective \(R \)-module. If \(M \) is an injective \(R \)-module, then it is \(Q \)-injective.

Theorem 2.14. Let \(M \) be a \(C_1 \)-module. If \(M \) is a F-stable and stable-
Q-injective; then \(M \) is \(Q \)-injective-duo-\(C_1 \)-module.

Proof: Let \(N \subseteq M \) and let \(\varphi : N \to M \) be an \(R \)-homomorphism of \(M \). So \(N \) is a stable because \(M \) is a \(F \)-stable. But from stable-
Q-injective of \(M \), there is an \(\varphi : M \to M \) \(\varphi \) extends \(\varphi \). Hence \(M \) is a \(Q \)-injective. Thus \(M \) is \(Q \)-
injective-duo-\(C_1 \)-module.

Corollary 2.15. Let \(M \) be a \(C_1 \)-module. If \(N \subseteq M \); \(\varphi(N) \subseteq N \) \(\exists \varphi : N \to M \) be a homomorphism and \(M = M_1 \oplus M_2 \) is a stable-
Q-injective, then \(M \) is \(Q \)-injective-duo-\(C_1 \)-module.

Proof: By Theorem (2.14).

Remark 2.16. From definition of fully invariant submodule and definition of stable, we find the two meanings are same.

Recall that a ring \(R \) is called Quasi-Frobenius (QF-ring) if every projective module is injective; or every injective module
is discrete. From [11], every projective-module is injective and then every injective-module is \(Q \)-injective.

Corollary 2.17. Let \(M \) be a \(C_1 \)-module over QF-ring. If \(M \) is a projective module and stable in \(R \), then \(M \) is \(Q \)-injective-
duo-\(C_1 \)-module (\(N \) is \(Q \)-injective submodule).

Proof: Let \(R \) be a QF-ring. Since \(M \) is a projective \(R \)-module, then \(M \) is an injective module and hence \(Q \)-injective.
Then every submodule \(N \) of \(M \) is \(Q \)-injective. Note that \(M \) is stable module; so for \(\varphi : N \to M \) be a homom. we get \(\varphi(N) \subseteq N \). Thus \(M \) is \(Q \)-injective-duo-\(C_1 \)-module.

Recall that a module \(M \) is called \(D_1 \)-module if for \(N < M \), \(\exists M = M_1 \oplus M_2 \) is a coessential sub of \(N \); or if \(N, K \leq M \) and \(H \leq N \), then \(M = H \oplus K \) and \(N \cap H \leq M \). So \(D_1 \)-
module is extending.

Proposition 2.18. Let \(M \) be an \(R \)-module over QF-ring \(R \). If:

1. \(M \) is \(D_1 \)-module;
2. \(M \) is stable module;
3. \(M \) is a free-module;
then \(M \) is \(Q \)-injective-duo-\(C_1 \)-module.

Proof: From condition (1); \(M \) is \(C_1 \)-module. From condition (2); \(\exists \) an \(R \)-homomorphism \(\varphi : N \to M \) \(\exists \varphi(N) \subseteq N \) \((N \) is fully invariant). So \(N \) is a
duo submodule. Condition (3); gives \(M \) is a free-module. So if we take \(F \) is a free-
R-module

on a set \(S \). Suppose that \(N_1, N_2 \) two modules over the ring \(R \). Let \(\varphi : N_1 \to N_2 \) is a homomorphism.

\[\forall x \in S; \text{ we choose } a_x \in N_1 \exists j(x) = a_x \ldots \ldots \ (1) \]

Also,

\[\forall x \in F, g(x) \in N_2 \text{ and } \varphi : N_1 \to N_2 \text{ is onto.} \]

Then \(\exists a_x \in N_1 \exists \varphi(a_x) = g(x) \ldots \ldots \ (2) \)

Since \(F \) is a free-R-module on \(S \), \(\exists \) a unique homomorphism \(h : F \to N_1 \exists h \circ i = j \ldots \ldots \ (3) \)

To prove that \(\varphi \circ h = g \). Let \(x \in F \). So

\[x = \sum r_k x_k; x_k \in S, r_k \in R; k = 1, 2, \ldots, n \]

(because \(F \) is generated by \(s \in F = \langle s \rangle \)).

Now

\[(\varphi \circ h)(x) = (\varphi \circ h)(\sum r_k x_k) \]

\[= \varphi(h(\sum r_k x_k)) \]

\[= \varphi(\sum r_k h(x_k)), \]

\(h \) is homomorphism.

\[= \varphi(\sum r_k (h(i(x_k)))). \]

Now

\[(\varphi \circ h) = \varphi(\sum r_k ((h \circ i)(x_k))). \]

\[= \varphi(\sum r_k j(x_k)); \ (by \ (3)). \]

\[= \varphi(\sum r_k a_{x_k}); \ (by \ (1)). \]

\[= \sum r_k \varphi(a_{x_k}); \varphi \text{ homomorphism.} \]

\[= \sum r_k g(x_k); \ (by \ (2)). \]

\[= g(\sum r_k x_k). \]

g homomorphism. So \(\varphi \circ h = g \). Thus \(M \) is a projective and hence \(M \) is injective \((M \) is a \(Q \)-injective). Then \(N \subseteq M \) is \(Q \)-injective. Thus \(M \) is a \(Q \)-injective-
duo-\(C_1 \)-module.

Lemma 2.19. For a ring \(R \), we have \(R_g \) is a semi-simple if and only if \(R \) is a semi-simple and so any module \(M \) over \(R \) is a semisimple module.

Proof: We need to prove the following.

1. \(R_g \) is semisimple if and only if \(R \) is semisimple.
2. \(M \) is a semisimple module over \(R \).

From [11], we can get the proof of (1).

Now we need to proof (2):

If \(R_g \) is a semi-simple and if \(M = M_g \exists m \in M \), then \(R \) is a
semi-simple as an epimorphic image of \(R_g \). So

\[M = \sum mR, m \in M \] as a sum of semi-simple module is again

Lemma 2.20. Let a ring \(R \) be a semi-simple, and \(M \) be an \(R \)-
module. Then every submodule \(N \subseteq M \) is \(Q \)-injective.
Proof: Since R is a semisimple ring, then every module \mathcal{M} over R is a semisimple. So $\mathcal{N} \leq \mathcal{M}$ is a direct summand. Hence \mathcal{M} is injective R-module. But every injective R-module is a Q-injective. Thus \mathcal{N} is Q-injective.

Theorem 2.21. Let R be a semisimple ring and \mathcal{M} is an R-module. If \mathcal{M} is D_1-module and stable; then it is Q-injective-duo-C_1-module.

Proof: It is clear that from lemma (2.20), $\mathcal{N} \leq \mathcal{M}$ is Q-injective. But \mathcal{M} is a stable, then $\exists f: \mathcal{N} \rightarrow \mathcal{M} \ni f(\mathcal{N}) \leq \mathcal{N}$. So \mathcal{N} is a fully invariant and hence \mathcal{M} is a duo (\mathcal{N} is a duo submodule). We have \mathcal{M} is D_1-module. So it is C_1-module. Thus \mathcal{N} is Q-injective of \mathcal{M}.

Corollary 2.22. Let \mathcal{M} be an R-module. If:

1. \mathcal{M} is projective module;
2. \mathcal{M} is a simple module;
3. \mathcal{M} is Q-injective;

then \mathcal{N} is Q-injective and duo submodule of C_1-module.

Proof: It is clear that projective module means C_1-module. Also, if a module \mathcal{M} is simple, then \mathcal{M} is duo-module. ($\mathcal{N} \leq \mathcal{M} \ni \mathcal{N}$ is fully invariant; $f(\mathcal{N}) \leq \mathcal{N}$ and $f: \mathcal{N} \rightarrow \mathcal{M}$ is an R-homomorphism). Now from condition (3), we have \mathcal{M} is Quasi-projective. So \mathcal{M} is a Q-injective and hence \mathcal{N} is a Q-injective of C_1-module.

Recall that any ring R is called V-ring if every simple R-module is injective [12].

Corollary 2.23. Let \mathcal{M} be a D_1-R-module over V-ring. Then \mathcal{M} is Q-injective-duo-C_1-module.

2. HOPFIAN, SELF-INJECTIVE MODULES AND Q-INJECTIVE SUBMODULE

From [13], a module \mathcal{M} is called self-p-injective if \mathcal{M} satisfy the following condition; every homomorphism from a projection invariant submodule of \mathcal{M} to \mathcal{M} can be lifted to \mathcal{M}.

(\#) Every self-injective is injective module.

Definition 3.1. Any R-module \mathcal{M} is called indecomposable if \mathcal{M} has no proper non trivial complement submodule \mathcal{M}_1 ($\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2$, so $\mathcal{M}_1 = 0$ or $\mathcal{M}_1 = \mathcal{M}$).

Example 3.2. Z is indecomposable Z-module, but Z is not simple Z-module (Z contains proper submodule $2Z$).

Therefore, every simple module is indecomposable, but the converse is not true.

Theorem 3.3. Let \mathcal{M} be an indecomposable self-P-injective R-module. Then any C_1- module is Q-injective-duo-C_1-module.

Proof: From definition of self-p-injective, there exists \mathcal{K} submodule of \mathcal{M} such that \mathcal{K} is fully invariant. Assume that \mathcal{M} is indecomposable module, so every submodule of \mathcal{M} is projective invariant. Then \mathcal{M} is Q-injective. Thus \mathcal{M} is Q-injective-duo-C_1-module.

Recall that any module \mathcal{M} is called Hopfian if every surjective f in $\text{End}(\mathcal{M})$ is isomorphism and a non simple module is called anti-Hopfian if proper submodule of \mathcal{M} is a non-Hopfian kernel such that a submodule \mathcal{N} of \mathcal{M} is non-Hopfian kernel (for \mathcal{M}) if there exists an isomorohism \mathcal{M}/\mathcal{N} to \mathcal{M} [14]. Or an R-module \mathcal{M} is anti-Hopfian if \mathcal{M} is non simple and all nonzero factor modules of \mathcal{M} are isomorphic to \mathcal{M}; that is for all $\mathcal{N} \leq \mathcal{M}$, $\mathcal{M}/\mathcal{N} \cong \mathcal{M}$ [16].

Example 3.4. Any module of semisimple Artinian ring with finite length is Hopfian module.

Lemma 3.5. Let \mathcal{M} be an R-module. If \mathcal{M} is anti-Hopfian, then every submodule \mathcal{N} of \mathcal{M} is Q-injective [15].

Theorem 3.6. Let \mathcal{M} be C_1-R-module. If \mathcal{M} has exactly one non-zero proper submodule and $\mathcal{M} = \mathcal{M}_1 \oplus \mathcal{M}_2 \ni \mathcal{M}_1, \mathcal{M}_2$ are simple modules, then $\mathcal{N} \leq \mathcal{M} \ni \mathcal{N}$ is a Q-injective of \mathcal{M}.

Proof: From [14], \mathcal{M} is anti-Hopfian module. Since \mathcal{M}_1 and \mathcal{M}_2 are simple modules, then \mathcal{M} is a simple module and so it is a duo module (\mathcal{N} is a duo submodule). From lemma (3.5), the proof is completed.

Corollary 3.7. Let R be a Dedekind domain, and \mathcal{M} is C_1-module with $\text{Rad}(\mathcal{M}) \neq \mathcal{M}$. If $\mathcal{M} \cong R/I^2 \ni 1$ is a non-zero ideal of R and \mathcal{N} is duo submodule of \mathcal{M}, then $\mathcal{N} \leq \mathcal{M}$ is Q-injective in C_1-module.

Proof: From [14] and Lemma (3.5).

3. CONCLUSIONS

This paper investigated modules having a submodule are duo and Quasi-injective properties. Tow generalization of C_1-module have been studied. We proved that any module has pseudo-injective, \mathcal{N} is essential in \mathcal{M} and stable, this mean \mathcal{M} is a Quasi-injective-duo-C_1-module where R is a Dedekind domain. Also same goal can obtained it if \mathcal{M} is a projective and stable with \mathcal{N} is an essential in \mathcal{M}.

REFERENCES

C1 حول المقاسات الجزئية شبه الغامرة والثنائية للمقاس من نوع
عبد السلام فائق طالك* و ماجد محمد عبد
قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة الأنبار، رمادي، العراق

الخلاصة:
في هذا البحث تم تحقيق المقاس الذي يمتلك مقاسات جزئية شبه غامرة وثنائية. قمنا تعميم جديد للمقاس من نوع C1 باستخدام الطريقة الرئيسية التي اعتمدت على كيفية الحصول على مقاس جزئي N في المقاس M، وكان هذا المقاس C1 للمقاسا الأسلي للتقاطع بين المقاسات الجزئية شبه الغامرة والمقاس الغامر الكاذب.

anti-hopfian