Document Type : Review Paper

Authors

Al-Mustansiriyah University, College of science, Department of Biology, Baghdad 10001, Iraq

Abstract

SAR-COV2 is still a pressing issue, 219M people were infected and more than 4.5M lost their lives. The majority of antiviral and inflammatory therapies could only provide a supportive role in treating a limited number of COVID cases. This review investigates the available vaccines in terms of their safety and efficiency in fighting the virus. Seven vaccines are similar in their side effects to other influenza vaccines and their necessity to a booster dose. Although that several technologies have been used to manufacture the vaccine, mRNA vaccines clearly show a high protection rate touched 90% specially in severe and hospitalization cases prevention. Among all available vaccines, Pfizer vaccine is an exception as it granted the full approval to be used in people age 16 and under till five years.
 

 

Keywords

Main Subjects

  1. Hui DS, Azhar EI, Madani TA, et al. : The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020; 91:264–6.
  2. Liu C., Zhou Q., Li Y., Garner L.V., Watkins S.P., Carter L.J., Smoot J., Gregg A.C., Daniels A.D., Jervey S. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science. 2020;6:315–331.
  3. Callaway E. The race for coronavirus vaccines: a graphical guide. Nature. 2020;580(7805):576.
  4. Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77:8801–11.
  5. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369:330–3.
  6. Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol. 2020;17:765–7.
  7. Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir Res. 2020;178:104792.
  8. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–3.
  9. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281–92 e286.
  10.  Bertram S, Dijkman R, Habjan M, Heurich A, Gierer S, Glowacka I, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol. 2013;87:6150–60.
  11.   Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80.e8.
  12. Du L, Kao RY, Zhou Y, He Y, Zhao G, Wong C, et al. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem Biophys Res Commun. 2007;359:174–9.
  13. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181:894–904.e9.
  14. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581:215–20.
  15. Weissenhorn W, Dessen A, Calder LJ, Harrison SC, Skehel JJ, Wiley DC. Structural basis for membrane fusion by enveloped viruses. Mol Membr Biol. 1999;16:3–9.
  16. Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res. 2017;27:119–29.
  17. Hulswit RJ, de Haan CA, Bosch BJ. Coronavirus spike protein and tropism changes. Adv Virus Res. 2016;96:29–57.
  18. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–8.
  19. 19-Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181–92.
  20. 20-Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87:E1–9.
  21. 21-Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586–90.
  22. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 2020;117:11727–34.
  23. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020;525:135–40.
  24. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94:e00127–20.
  25. Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol. 2019;26:481–9.
  26. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir Res. 2020;176:104742.
  27. Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med. 2020;28:174–84.
  28. Hasan A, Paray BA, Hussain A, Qadir FA, Attar F, Aziz FM, et al. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn. 2020;22:1–9.
  29. Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015;202:120–34.
  30.  Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet. 1998;351:472–7.
  31. Kido H, Okumura Y, Takahashi E, Pan HY, Wang S, Yao D, et al. Role of host cellular proteases in the pathogenesis of influenza and influenza-induced multiple organ failure. Biochim Biophys Acta. 2012;1824:186–94.
  32. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pohlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88:1293–307.
  33. Limburg H, Harbig A, Bestle D, Stein DA, Moulton HM, Jaeger J, et al. TMPRSS2 is the major activating protease of influenza A virus in primary human airway cells and influenza B virus in human type II pneumocytes. J Virol. 2019;93:e00649–19.
  34. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:1620.
  35.  Kawase M, Kataoka M, Shirato K, Matsuyama S. Biochemical analysis of coronavirus spike glycoprotein conformational intermediates during membrane fusion. J Virol. 2019;93:e00785–19.
  36. Pandey S.C., Pande V., Sati D., Upreti S., Samant M. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sci. 2020;117956.
  37. Grohskopf L.A., Alyanak E., Broder K.R., Walter E.B., Fry A.M., Jernigan D.B. Prevention and control of seasonal influenza with vaccines: recommendations of the advisory committee on immunization practices-United States, 2019–20 influenza season. MMWR Recommendations reports. 2019;68(3):1.
  38. Grohskopf L.A., Alyanak E., Broder K.R., Walter E.B., Fry A.M., Jernigan D.B. Prevention and control of seasonal influenza with vaccines: recommendations of the advisory committee on immunization practices—United States, 2019–20 influenza season. MMWR Recommendations reports. 2019;68(3):1.
  39. Shang W., Yang Y., Rao Y., Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. npj Vaccines. 2020;5(1):1–3.
  40. Grohskopf L.A., Alyanak E., Broder K.R., Walter E.B., Fry A.M., Jernigan D.B. Prevention and control of seasonal influenza with vaccines: recommendations of the advisory committee on immunization practices—United States, 2019–20 influenza season. MMWR Recommendations reports. 2019;68(3):1.
  41. Sanal M.G., Duby R.C. An oral live attenuated vaccine strategy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/2019-nCoV) Research Ideas Outcomes. 2020;6:e53767.
  42. Nuismer S.L., Basinski A., Bull J.J. Evolution and containment of transmissible recombinant vector vaccines. Evol. Appl. 2019;12(8):1595–1609.
  43. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2020 Oct 15;S1473-3099(20):30831–8.
  44. Wang H, Zhang Y, Huang B, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell. 2020 Aug 6;182(3):713–21.e9.
  45. Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2020 Oct 15;S1473-3099(20):30831–8.
  46. Chen WH, Strych U, Hotez PJ, et al.: The SARS-CoV-2 vaccine pipeline: an overview. Curr Trop Med Rep. 2020, 1-4. 10.1007/s40475-020-00201-6.
  47. L. Li, N. Petrovsky Molecular mechanisms for enhanced DNA vaccine immunogenicity Expert Review of Vaccines, 15 (2016), pp. 313-329.
  48. Geall A.J., Mandl C.W., Ulmer J.B. Seminars in Immunology. Elsevier; 2013. RNA: the new revolution in nucleic acid vaccines.
  49. Liu M.A.J.V. A comparison of plasmid DNA and mrna as vaccine technologies. 2019;7(2):37.
  50. Pardi N., Weissman D. Nucleoside modified mRNA vaccines for infectious diseases. Methods Mol. Biol. 2017;1499:109–121.
  51. Schlake T. mRNA as novel technology for passive immunotherapy. Cell. Mol. Life Sci. 2019;76(2):301–328.
  52. Fabre A-L, Colotte M, Luis A, Tuffet S, Bonnet J. An efficient method for long-term room temperature storage of RNA. Eur J Hum Genet. 2014 Mar;22(3):379–85.
  53. Maruggi G., Zhang C., Li J., Ulmer J.B., Yu D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol. Ther. 2019;27(4):757–772.
  54. Corbett K.S., Edwards D., Leist S.R., Abiona O.M., Boyoglu-Barnum S., Gillespie R.A., Himansu S., Schafer A., Ziwawo C.T., DiPiazza A.T. 2020. SARS-CoV-2 mRNA Vaccine Development Enabled by Prototype Pathogen Preparedness, bioRxiv.
  55. Yang Z.-y., Kong W.-p., Huang Y., Roberts A., Murphy B.R., Subbarao K., Nabel G.J. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004;428(6982):561–564.
  56. Kirchdoerfer R.N., Cottrell C.A., Wang N., Pallesen J., Yassine H.M., Turner H.L., Corbett K.S., Graham B.S., McLellan J.S., Ward A.B. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016;531(7592):118–121.
  57. 57-Pfizer-BioNTech COVID-19 Vaccine(link is external) (U.S. Food and Drug Administration 2020).
  58. C4591001 Clinical Protocol: A Phase 1/2/3 Study to Evaluate the Safety, Tolerability, Immunogenicity, and Efficacy of RNA Vaccine Candidates Against COVID-19 in Health Individuals (Pfizer 2020).
  59. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec 10;NEJMoa2034577.
  60. Anderson EJ, Rouphael NG, Widge AT, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020 Dec 17;383(25):2427–38.
  61. Moderna Therapeutics. Moderna announces longer shelf life for its COVID-19 vaccine candidate at refrigerated temperatures [Internet]. Moderna. 2020 [cited 2020 Dec 20]. Available from: https://investors. modernatx.com/news-releases/news-release-details/ moderna-announces-longer-shelf-life-its-covid-19- vaccine.
  62. Widge AT, Rouphael NG, Jackson LA, et al. Durability of responses after SARS-CoV-2 mRNA- 1273 vaccination. N Engl J Med. 2020 Dec 3;NEJMc2032195.
  63. Moderna Therapeutics. Moderna’s COVID-19 vaccine candidate meets its primary efficacy endpoint in the first interim analysis of the Phase 3 COVE study. Moderna. 2020 [cited 2020 Dec 19]. Available from: https://investors.modernatx.com/ news-releases/news-release-details/modernas-covid- 19-vaccine-candidate-meets-its-primary-efficacy.
  64. T.R.F. Smith, A. Patel, S. Ramos, D. Elwood, X. Zhu, J. Yan, et al. Immunogenicity of a DNA vaccine candidate for COVID-19 Nat. Commun., 11 (2020), p. 2601.
  65. K. Modjarrad, C.C. Roberts, K.T. Mills, A.R. Castellano, K. Paolino, K. Muthumani, et al. Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial Lancet Infect. Dis., 19 (2019), pp. 1013-1022.
  66. D.O. Villarreal, K.T. Talbott, D.K. Choo, D.J. Shedlock, D.B. Weiner Synthetic DNA vaccine strategies against persistent viral infections Expert Review of Vaccines, 12 (2013), pp. 537-554.
  67. J. Liu, R. Kjeken, I. Mathiesen, D.H. Barouch Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation J. Virol., 82 (2008), pp. 5643-5649.
  68. Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines (Basel). 2014 Jul 29;2(3):624–41.
  69. Mennechet FJD, Paris O, Ouoba AR, et al. A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines. 2019 Jun;18(6):597–613.
  70. Singh S, Kumar R, Agrawal B. Adenoviral vector- based vaccines and gene therapies: Current status and future prospects. Adenoviruses. 2019;(Chapter 4):53–91.
  71. Capone S, Raggioli A, Gentile M, et al. Immunogenicity of a new gorilla adenovirus vaccine candidate for COVID-19 [Internet]. bioRxiv; 2020 [cited 2020 Dec 19]. p. 2020.10.22.349951.
  72. Coughlan L, Sridhar S, Payne R, et al. Heterologous two-dose vaccination with simian adenovirus and poxvirus vectors elicits long-lasting cellular immunity to influenza virus A in healthy adults. EBioMedicine 2018; 29: 146–54.
  73. Doremalen N, Haddock E, Feldmann F, et al. A single dose of ChAdOx1 MERS provides protective immunity in rhesus macaques. Sci Adv 2020; 6: eaba8399.
  74. Folegatti PM, Bittaye M, Flaxman A, et al. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral- vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect Dis 2020; 20: 816–26.
  75. van Doremalen N, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv 2020; https://doi.org/10.1101/2020.05.13.093195 (preprint).
  76. Folegatti PM, Bellamy D, Roberts R, et al. Safety and immunogenicity of a novel recombinant simian adenovirus ChAdOx2 as a vectored vaccine. Vaccines (Basel) 2019; 7: 40.
  77. Bos R, Rutten L, van der Lubbe JEM, et al. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. NPJ Vaccines. 2020 ;28;5:91.
  78. Mercado NB, Zahn R, Wegmann F, Loos C, ChandrashekarA,YuJ,etal.Single-shotAd26vaccine protects against SARS-CoV-2 in rhesus macaques. Nature. 2020 Oct;586(7830):583–8.
  79. Johnson & Johnson. Johnson & Johnson prepares to resume phase 3 ENSEMBLE trial of its Janssen COVID-19 vaccine candidate in the U.s [Internet]. Johnson & Johnson. 2020 [cited 2020 Dec 19]. Available from: https://www.jnj.com/our-company/ johnson-johnson-prepares-to-resume-phase-3- ensemble-trial-of-its-janssen-covid-19-vaccine- candidate-in-the-us.
  80. Sadoff J, Le Gars M, Shukarev G, et al. Safety and immunogenicity of the Ad26.COV2.S COVID-19 vaccine candidate: interim results of a phase 1/2a, double-blind, randomized, placebo- controlled trial [Internet]. bioRxiv. medRxiv; 2020. Available from: http://medrxiv.org/lookup/ doi/10.1101/2020.09.23.20199604.
  81. Liu G, Carter B, Gifford DK. Predicted cellular immunity population coverage gaps for SARS-CoV-2 subunit vaccines and their augmentation by compact peptide sets. Cell Systems. 2020 Nov 27; S2405– 4712(20)30460–1.
  82. Chen Y., Qin C., Wei Q., Li R., Gao H., Zhu H., Deng W., Bao L., Wei T. Protection of rhesus macaque from SARS-coronavirus challenge by recombinant adenovirus vaccine. BioRxiv. 2020 doi: 10.1101/2020.02.17.951939. 
  83. Haschke M., Schuster M., Poglitsch M., Loibner H., Salzberg M., Bruggisser M., Penninger J., Krähenbühl S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin. Pharmacokinet. 2013; 52(9):783–792.
  84. George P.J., Tai W., Du L., Lustigman S. The potency of an anti-MERS coronavirus subunit vaccine depends on a unique combinatorial adjuvant formulation. Vaccines. 2020;8(2):251.
  85. Chen W.-H., Strych U., Hotez P.J., Bottazzi M.E. The SARS-CoV-2 vaccine pipeline: an overview. Current tropical medicine reports. 2020:1–4.
  86. Biopharmaceuticals C. 2020. Clover Initiates Development of Recombinant Subunit-trimer Vaccine for Wuhan Coronavirus (2019-Ncov).
  87. Wadman M. Will a small, long shot U.S. company end up producing the best coronavirus vaccine? [Internet]. Science. 2020. Available from: http:// dx.doi.org/10.1126/science.abf5474.
  88. Tian J-H, Patel N, Haupt R, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 elicits immunogenicity in baboons and protection in mice [Internet]. bioRxiv; 2020 [cited 2020 Dec 19]. p. 2020.06.29.178509. Available from: https://www. biorxiv.org/content/10.1101/2020.06.29.178509v1.