Document Type : Review Paper

Authors

1 Department of Chemistry. Ibn-Al-Haithem College of Education for pure science. University of Baghdad, Iraq

2 Department of Chemistry, College of Science, University of Baghdad, Iraq.

3 Chemistry Department, College of Science, University of Anbar, Iraq

4 Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Jordan

Abstract

This review covers recent progress in the synthesis of curcumin and the bioactivity of semisynthetic and synthetic analogs of curcumin. The review also shows how curcumin is a useful intermediate for the synthesis of more complex organic molecules; historical perspective; the process of preparing the metal complexes and characterization the produced complexes using various spectral and other techniques; shows the importance of curcumin and its derivatives for their potential applications in medical devices and broad-spectrum of medical application such as antibiotic ointment, alternative therapeutics, antifungal, and antibacterial activities.

Keywords

Main Subjects

[1]     Demiray, M., Sahinbas, H., Atahan, S., Demiray, H., Selcuk, D., Yildirim, I., & Atayoglu, A. T. (2016). Successful treatment of c-kit-positive metastatic Adenoid Cystic Carcinoma (ACC) with a combination of curcumin plus imatinib: A case report. Complementary Therapies in Medicine27, 108-113.
[2]     Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of curcumin: miniperspective. Journal of medicinal chemistry60(5), 1620-1637.
[3]     Prasad, S., Gupta, S. C., Tyagi, A. K., & Aggarwal, B. B. (2014). Curcumin, a component of golden spice: from bedside to bench and back. Biotechnology advances32(6), 1053-1064.
[4]     Priyadarsini, K. I. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules19(12), 20091-20112.
[5]     Tisato, F., Refosco, F., & Bandoli, G. (1994). Structural survey of technetium complexes. Coordination Chemistry Reviews135, 325-397.
[6]     Sreeraj, G., Jacob, J., George, R., & Sreeraj, T. R. (2016). A unique formulation of hydrogenated curcuminoids with higher bio availability and the application in food matrices. Journal of Nutrition Food Sciences6(2), 1.
[7]     Gupta, A. P., Gupta, M. M., & Kumar, S. (1999). Simultaneous determination of curcuminoids in Curcuma samples using high performance thin layer chromatography. Journal of liquid chromatography & related technologies22(10), 1561-1569.
[8]     Daily, J. W., Yang, M., & Park, S. (2016). Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: a systematic review and meta-analysis of randomized clinical trials. Journal of medicinal food19(8), 717-729.
[9]     Keypour, H., Aidi, M., Mahmoudabadi, M., Karamian, R., Asadbegy, M., & Gable, R. W. (2019). Synthesis, X-ray crystal structural, antioxidant and antibacterial studies of new Cu (II) macroacyclic Schiff base complex with a ligand containing homopiperazine moiety. Journal of Molecular Structure1198, 126666.
[10] Begum, A. N., Jones, M. R., Lim, G. P., Morihara, T., Kim, P., Heath, D. D., ... & Frautschy, S. A. (2008). Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease. Journal of Pharmacology and Experimental Therapeutics326(1), 196-208.
[11] Adams, B. K., Cai, J., Armstrong, J., Herold, M., Lu, Y. J., Sun, A., ... & Shoji, M. (2005). EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anti-cancer drugs16(3), 263-275.
[12] Amalraj, A., Pius, A., Gopi, S., & Gopi, S. (2017). Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives–A review. Journal of traditional and complementary medicine7(2), 205-233.
[13] Grynkiewicz, G., & Ślifirski, P. (2012). Curcumin and curcuminoids in quest for medicinal status. Acta Biochimica Polonica59(2).
[14] Goel, A., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin as “Curecumin”: from kitchen to clinic. Biochemical pharmacology75(4), 787-809.
[15] Sanphui, P., & Bolla, G. (2018). Curcumin, a biological wonder molecule: A crystal engineering point of view. Crystal Growth & Design18(9), 5690-5711.
[16] Bagchi, A., Mukherjee, P., Bhowmick, S., & Raha, A. (2015). Synthesis, characterization and antibacterial activity of a novel curcumin metal complex. Int J Drug Dev Res7(2), 011-014.
[17] Mei, X., Luo, X., Xu, S., Xu, D., Zheng, Y., Xu, S., & Lv, J. (2009). Gastroprotective effects of a new zinc (II)–curcumin complex against pylorus-ligature-induced gastric ulcer in rats. Chemico-Biological Interactions181(3), 316-321.
[18] Barik, A., Mishra, B., Shen, L., Mohan, H., Kadam, R. M., Dutta, S., ... & Priyadarsini, K. I. (2005). Evaluation of a new copper (II)–curcumin complex as superoxide dismutase mimic and its free radical reactions. Free Radical Biology and Medicine39(6), 811-822.
[19] Iwunze, M. O. (2014). Characterization of cr-curcumin complex by differential pulse voltammetry and UV-VIS spectrophotometry. International Scholarly Research Notices2014.
[20] Leung, M. H., Pham, D. T., Lincoln, S. F., & Kee, T. W. (2012). Femtosecond transient absorption spectroscopy of copper (II)–curcumin complexes. Physical Chemistry Chemical Physics14(39), 13580-13587.
[21] Thompson, K. H., Böhmerle, K., Polishchuk, E., Martins, C., Toleikis, P., Tse, J., ... & Orvig, C. (2004). Complementary inhibition of synoviocyte, smooth muscle cell or mouse lymphoma cell proliferation by a vanadyl curcumin complex compared to curcumin alone. Journal of inorganic biochemistry98(12), 2063-2070.
[22] Song, Y. M., Xu, J. P., Ding, L., Hou, Q., Liu, J. W., & Zhu, Z. L. (2009). Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1, 10-phenanthroline-5, 6-dione. Journal of inorganic biochemistry103(3), 396-400.
[23] Heger, M., van Golen, R. F., Broekgaarden, M., & Michel, M. C. (2014). The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacological reviews66(1), 222-307.
[24] Jiang, T., Wang, L., Zhang, S., Sun, P. C., Ding, C. F., Chu, Y. Q., & Zhou, P. (2011). Interaction of curcumin with Al (III) and its complex structures based on experiments and theoretical calculations. Journal of Molecular Structure1004(1-3), 163-173.
[25] Sumathi, S., Tharmaraj, P., Sheela, C. D., & Ebenezer, R. (2012). Synthesis, spectral, NLO studies, and antimicrobial activities of curcumin diketimine metal complexes. Journal of Coordination Chemistry65(3), 506-515.
[26] Sreelakshmi, C., Goel, N., Datta, K. K. R., Addlagatta, A., Ummanni, R., & Reddy, B. V. (2013). Green synthesis of curcumin capped gold nanoparticles and evaluation of their cytotoxicity. Nanoscience and Nanotechnology Letters5(12), 1258-1265.
[27] Balaji, B., Balakrishnan, B., Perumalla, S., Karande, A. A., & Chakravarty, A. R. (2014). Photoactivated cytotoxicity of ferrocenyl-terpyridine oxovanadium (IV) complexes of curcuminoids. European Journal of Medicinal Chemistry85, 458-467.
[28] Pi, Z., Wang, J., Jiang, B., Cheng, G., & Zhou, S. (2015). A curcumin-based TPA four-branched copper (II) complex probe for in vivo early tumor detection. Materials Science and Engineering: C46, 565-571.
[29] Sarkar, T., & Hussain, A. (2016). Photocytotoxicity of curcumin and its iron complex. Enzym. Eng5, 1-6.
[30] Babamale, H. F., Lawal, A., Rajee, O. A., & Oloyede, E. A. (2016). Synthesis, characterization and biological activity studies of mixed paracetamol-ascorbic acid metal complexes. Journal of Applied Sciences and Environmental Management20(4), 1157-1161.
[31] Vellampatti, S., Chandrasekaran, G., Mitta, S. B., Lakshmanan, V. K., & Park, S. H. (2018). Metallo-curcumin-conjugated DNA complexes induces preferential prostate cancer cells cytotoxicity and pause growth of bacterial cells. Scientific reports8(1), 1-11.
[32] Lateef, Sagid M., and Zainab Saleh Hassan. "Synthesis and Characterization of Mixed Ligand Complexes Contain Curcumin, Schiff Base and Azide (N3‾) with Some Metal ions and Evaluation their Antibacterial Activity." (2009).
[33] Beneduci, A., Corrente, G. A., Marino, T., Aiello, D., Bartella, L., Di Donna, L., ... & Furia, E. (2019). Insight on the chelation of aluminum (III) and iron (III) by curcumin in aqueous solution. Journal of Molecular Liquids296, 111805.
[34] Tawfeeq, G. A., & Al-Noor, T. H. (2019). Synthesis, Characterization Antimicrobial Activities Studies Of Mixed-Ligand Complexes Of Curcumin And Anthranilic Acid With Bivalent Metals Chlorides. RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES10(1), 37-44.
[35] Carreira-Barral, I., Riopedre-Fernández, M., de Blas, A., Mosquera, J., Vázquez, M. E., Platas-Iglesias, C., & Esteban-Gómez, D. (2020). Ditopic binuclear copper (II) complexes for DNA cleavage. Journal of Inorganic Biochemistry205, 110995.
[36] Liu, G., Zhang, Q., Li, Y., Wang, X., Wu, H., Wei, Y., ... & Tao, L. (2020). High-throughput preparation of antibacterial polymers from natural product derivatives via the hantzsch reaction. Iscience23(1), 100754.
[37] Mei, X., Luo, X., Xu, S., Xu, D., Zheng, Y., Xu, S., & Lv, J. (2009). Gastroprotective effects of a new zinc (II)–curcumin complex against pylorus-ligature-induced gastric ulcer in rats. Chemico-Biological Interactions181(3), 316-321.
[38] Barik, A., Mishra, B., Shen, L., Mohan, H., Kadam, R. M., Dutta, S., ... & Priyadarsini, K. I. (2005). Evaluation of a new copper (II)–curcumin complex as superoxide dismutase mimic and its free radical reactions. Free Radical Biology and Medicine39(6), 811-822.
[39] Iwunze, M. O. (2014). Characterization of cr-curcumin complex by differential pulse voltammetry and UV-VIS spectrophotometry. International Scholarly Research Notices2014.
[40] Leung, M. H., Pham, D. T., Lincoln, S. F., & Kee, T. W. (2012). Femtosecond transient absorption spectroscopy of copper (II)–curcumin complexes. Physical Chemistry Chemical Physics14(39), 13580-13587.
[41] Kareem, A., Arshad, M., Nami, S. A., & Nishat, N. (2016). Herbo-mineral based Schiff base ligand and its metal complexes: Synthesis, characterization, catalytic potential and biological applications. Journal of Photochemistry and Photobiology B: Biology160, 163-171.
[42] Rodrigues, M. A., Fernandes, J. N., Ruggiero, R., & Guerra, W. (2012). Palladium complex containing curcumin as ligand: thermal and spectral characterization. Am. J. Chem2(3), 157-159.
[43] Zhou, S. S., Li, D., Zhou, Y. M., & Cao, J. M. (2012). The skin function: a factor of anti-metabolic syndrome. Diabetology & Metabolic Syndrome4(1), 1-11.
[44] Zhou, S. S., Xue, X., Wang, J. F., Dong, Y., Jiang, B., Wei, D., ... & Jia, Y. (2012). Synthesis, optical properties and biological imaging of the rare earth complexes with curcumin and pyridine. Journal of Materials Chemistry22(42), 22774-22780.
[45] Refat, M. S. (2013). Synthesis and characterization of ligational behavior of curcumin drug towards some transition metal ions: Chelation effect on their thermal stability and biological activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy105, 326-337.
[46] Goswami, T. K., Gadadhar, S., Gole, B., Karande, A. A., & Chakravarty, A. R. (2013). Photocytotoxicity of copper (II) complexes of curcumin and N-ferrocenylmethyl-L-amino acids. European journal of medicinal chemistry63, 800-810.
[47] Weiss, H., Reichel, J., Görls, H., Schneider, K. R. A., Micheel, M., Pröhl, M., ... & Weigand, W. (2017). Curcuminoid–BF2 complexes: Synthesis, fluorescence and optimization of BF2 group cleavage. Beilstein journal of organic chemistry13(1), 2264-2272.
[48] Dyrssen, D. W., Novikov, Y. P., & Uppström, L. R. (1972). Studies on the chemistry of the determination of boron with curcumin. Analytica Chimica Acta60(1), 139-151.
[49] Bagchi, A., Mukherjee, P., Bhowmick, S., & Raha, A. (2015). Synthesis, characterization and antibacterial activity of a novel curcumin metal complex. Int J Drug Dev Res7(2), 011-014.
[50] Markham, J., Liang, J., Levina, A., Mak, R., Johannessen, B., Kappen, P., ... & Lay, P. A. (2017). (Pentamethylcyclopentadienato) rhodium Complexes for Delivery of the Curcumin Anticancer Drug. European Journal of Inorganic Chemistry2017(12), 1812-1823.
[51] Sarkar, T., Butcher, R. J., Banerjee, S., Mukherjee, S., & Hussain, A. (2016). Visible light-induced cytotoxicity of a dinuclear iron (III) complex of curcumin with low-micromolar IC50 value in cancer cells. Inorganica Chimica Acta439, 8-17.
[52] Zhang, P., & Sadler, P. J. (2017). Redox‐active metal complexes for anticancer therapy. European Journal of Inorganic Chemistry2017(12), 1541-1548.
[53] inab S." Synthesis and Specteral study of mixed Ligand complexes for Curcumin with some metal ions and evalution of Antibacterial Activity" A Dissertation Submitted to collage of education for pure sciences/  Ibn Al Haitham of Baghdad University in partial fulfillment of the requirements for the degree of Master of science in chemistry, (2018).
[54] Waranyoupalin, R., Wongnawa, S., Wongnawa, M., Pakawatchai, C., Panichayupakaranant, P., & Sherdshoopongse, P. (2009). Studies on complex formation between curcumin and Hg (II) ion by spectrophotometric method: A new approach to overcome peak overlap. Open Chemistry7(3), 388-394.
[55] Triantis, C., Tsotakos, T., Tsoukalas, C., Sagnou, M., Raptopoulou, C., Terzis, A., ... & Papadopoulos, M. (2013). Synthesis and characterization of fac-[M (CO) 3 (P)(OO)] and cis-trans-[M (CO) 2 (P) 2 (OO)] complexes (M= Re, 99mTc) with acetylacetone and curcumin as OO donor bidentate ligands. Inorganic Chemistry52(22), 12995-13003.
[56] Lee, W. H., Loo, C. Y., Young, P. M., Traini, D., Mason, R. S., & Rohanizadeh, R. (2014). Recent advances in curcumin nanoformulation for cancer therapy. Expert opinion on drug delivery11(8), 1183-1201.
[57] Lange, J. L., Hayne, D. J., Roselt, P., McLean, C. A., White, J. M., & Donnelly, P. S. (2016). A gallium (III) Schiff base-curcumin complex that binds to amyloid-β plaques. Journal of inorganic biochemistry162, 274-279.
[58] Banerjee, S., & Chakravarty, A. R. (2015). Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity. Accounts of chemical research48(7), 2075-2083.
[59] Harada, T., Pham, D. T., Leung, M. H., Ngo, H. T., Lincoln, S. F., Easton, C. J., & Kee, T. W. (2011). Cooperative binding and stabilization of the medicinal pigment curcumin by diamide linked γ-cyclodextrin dimers: a spectroscopic characterization. The Journal of Physical Chemistry B115(5), 1268-1274.
[60] Asti, M., Ferrari, E., Croci, S., Atti, G., Rubagotti, S., Iori, M., ... & Versari, A. (2014). Synthesis and characterization of 68Ga-labeled curcumin and curcuminoid complexes as potential radiotracers for imaging of cancer and Alzheimer’s disease. Inorganic chemistry53(10), 4922-4933.
[61] Ali M. Ali & Taghreed H. Al-Noor (2021), Curcumin - Schiff base with various metal ions complexes, M= Al(III), Mn(II), Fe(III), Co(II),Ni(II), Cu(II), Ag(I), Cd(II), Hg(II), and Pb(II), 5th International conference on advanced sciences ICAS5  IOP Conf. Series: Materials Science and Engineering, 1046, 012006.
[62] Ali M. Ali & Taghreed H. Al-Noor (2021), Synthesis, identification, antibacterial, and dyeing applications of complexes of hexadentate (N4O2 donor) Schiff base ligands derived from curcumin with some transition and non–transition metal cations, IOP Conf. Series: Materials Science and Engineering, 1046, 012005.
[63] Ali, A. M., Al-Noor, T. H., Abdalrazaq, E., & Jbarah, A. A. Q. Synthesis and DFT Study of the Complexation of Schiff Base Derived Curcumin and L-Tyrosine with Al (III), Ag (I), and Pb (II) Metal Ions. Indonesian Journal of Chemistry21(3), 708-724.
[64] Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive care medicine46(4), 586-590.
[65] Praditya, D., Kirchhoff, L., Brüning, J., Rachmawati, H., Steinmann, J., & Steinmann, E. (2019). Anti-infective properties of the golden spice curcumin. Frontiers in microbiology10, 912.
[66] Das, S., Sarmah, S., Lyndem, S., & Singha Roy, A. (2021). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure and Dynamics39(9), 3347-3357.
[67] Rachmawati, H., Soraya, I. S., Kurniati, N. F., & Rahma, A. (2016). In vitro study on antihypertensive and antihypercholesterolemic effects of a curcumin nanoemulsion. Scientia pharmaceutica84(1), 131-140.