Piecewise Monotone Approximation of Unbounded Functions In Weighted Space $L_{p,w}([-\pi, \pi])$

Alaa Adnan Auad1* and Sultan Hameed Mehiady2

1Department of Mathematics, College of Education for pure science, University of Anbar, Ramadi, Iraq
2Department of Mathematics, College of Education for pure science, University of Anbar, Ramadi, Iraq

ARTICLE INFO
Received: 4/4/2022
Accepted: 16/5/2022
Available online: 20/7/2022
DOI: 10.37652/juaps.2022.174841

Keywords:
piecewise monotone approximation.
unbounded functions.
weight space.

ABSTRACT

In this paper, investigate the approximation of unbounded functions in weighted space, by using trigonometric polynomials considered. We introduced type of polynomials piecewise monotone (q_{κ}) having same local monotonicity as unbounded functions without affecting the order of huge error have a finite number of max. and min. unbounded functions that amount. In addition, we established not included any of extreme points of this functions, χ of and closed subset γ on closed intervals χ then there exist class of polynomials such that the best of approximation has high or order of β and such that for κ sufficiently great of the polynomials and functions have the same monotonicity at each of γ.

1. INTRODUCTION

Let $\chi = [-\pi, \pi]$ be closed intervals, $L_p([-\pi, \pi])$ we can be define as the space of all bounded function on χ, with the norms.

$$\|f\|_p = \left(\int_{\chi} |f(t)|^p \, dt \right)^{\frac{1}{p}} < \infty$$

Let $C(w)$ be the set of all weighted function on χ, a weighted function can be defined. The follows $w: \chi \rightarrow \mathbb{R}^+$ such that $f(t) \leq M/w(t)$, $w > 0$, $M \in \mathbb{R}^+$, $w(t) \in C(w)$ and $L_{p,w}([-\pi, \pi])$ is the space of all unbounded functions on χ, which are equipped the norms.

$$\|f\|_{p,w} = \left(\int_{\chi} |f(t)| w(t) |t|^p \, dt \right)^{\frac{1}{p}} < \infty$$

Let T_{κ} be the set Which contains any polynomials of degree less than or equal to κ.

Let $[a, b]$ be a compact interval and $f: [a, b] \rightarrow \mathbb{R}^+$ a function, f is piecewise monotone if and only if there exists a partition $a = t_1 < t_2 < t_3 < \cdots < t_k = b$, on $[a, b]$ and a, b will be called the tops of f, such that $f_{i} = f |_{(t_{i-1}, t_i)}$ is monotone for all $i = 1, 2, \ldots, k - 1$.

The aim of this paper is discuss piecewise monotone approximation of unbounded functions in weighted space by some types of efficient polynomials. An example[1], [2] and [3]. The strongest results are by [4], [5], [6] and [7]. In 2011, kopotun [8], introduce the point wise shape which preserving approximation of function by algebraic polynomials. In fact Dzyubenko [9] and Leviatan [10] have obtain interpolatory estimates in monotone piecewise polynomial approximation and both of them shown good result in monotone approximation.

So, we can define the operator as:

$$G_{\kappa}(t) = \frac{1}{g_{\kappa}} \left(\frac{\sin \kappa t}{\sin \frac{\kappa}{2}} \right)^4; \quad g_{\kappa} = \int_{-\pi}^{\pi} \left(\frac{\sin \kappa t}{\sin \frac{\kappa}{2}} \right)^4 \, dt.$$

And $\kappa^3 \geq g_{\kappa} \leq 2\pi \kappa^3$.

2. Auxiliary Lemmas

Lemma 2.1. The operator $G_{\kappa}(t)$ has the following properties:

(i) If κ is even, $0 < \beta \leq \pi$, then

$$\int_{-\pi}^{\pi} G_{\kappa}(t) \, dt \leq \pi^\beta G_{\kappa}(t) \, dt.$$

(ii) if, $0 < \beta \leq \pi/2$, then

$$\int_{0}^{\pi} G_{\kappa}(t) \, dt \leq \frac{C}{\pi^2 \beta^2}.$$

Where C is positive constant of real numbers.

*Corresponding author at Department of Mathematics/College of Education for pure science/University of Anbar.
E-mail address: alaa.adnan.auad@uoanbar.edu.iq
Proof: (i) We take $0 < \beta \leq \pi/2$:

$$G_k(t) \text{ is an even periodic and we have}$$

$$\int_{-\pi}^{\pi} G_k(t) \, dt = \int_{-\pi}^{\pi} G_k(t) \, dt .$$

So , \[\int_{0}^{\pi} [G_k(t) - G_k(t + \pi)] \, dt = \int_{0}^{\pi} G_k(t) \, dt - \int_{0}^{\pi} G_k(t) \, dt \quad \text{ (2.1)} \]

Also, if $\pi / 2 < \beta \leq \pi$, Then

$$\int_{0}^{\pi} G_k(t) \, dt - \int_{-\pi}^{\pi} G_k(t) \, dt = \int_{0}^{\pi} G_k(t) \, dt - \int_{-\pi}^{\pi} G_k(t) \, dt \quad \text{ (2.2)}$$

From (2.1) and (2.2) we obtain

$$\int_{-\pi}^{\pi} G_k(t) \, dt \leq \int_{0}^{\pi} G_k(t) \, dt .$$

(ii) Let $0 < \beta \leq \pi/2$. Then, since $\kappa^3 \leq \pi \leq 2\pi \kappa^3$.

So, \[\int_{0}^{\pi} G_k(t) \, dt \leq \frac{1}{\kappa} \int_{0}^{\pi} \left(\frac{\sin^{1/2} t}{\sin^{1/2} \beta} \right)^4 \, dt \leq \frac{1}{\kappa^3} \int_{0}^{\pi} \frac{1}{(\sin^{1/2})^2} \, dt . \]

Now, for $0 < t \leq \pi$. $\sin^{1/2} t / 2 \geq t / 2$, hence

$$\int_{0}^{\pi} G_k(t) \, dt \leq \frac{\pi^2}{\kappa^3} \int_{0}^{\pi} \frac{1}{t^4} \, dt = \frac{\pi^2}{\kappa^3} \left[\frac{1}{\pi^3} + \frac{1}{\beta^3} \right] \leq \frac{C}{\kappa^3 \beta^3} .$$

And this lemma is proving.

3. Main results

Theorem 3.1 :

Let \(t \in [-\pi, \pi], f \in L_{P,w}([-\pi, \pi]), 1 \leq P < \infty \) Periodic function. Then there exist trigonometric polynomial \(q_k \) of order less than or equal to \(\kappa \), such that

\[\| f - q_k \|_{P,w} \leq \frac{C}{\kappa} , \]

where \(C \) is a positive constant.

Proof. We can choose \(q_k(t) = q_k(t + 2k\pi), \kappa = 1,2, ..., \text{ and} \)

\[q_k(t) = \int_{-\pi}^{\pi} G_k(\delta)f(t - \delta) \, d\delta . \]

Since \(f \) is a Periodic function, we have

\[q_k(t) = \int_{-\pi}^{\pi} G_k(\delta)f(t - \delta) \, d\delta = \int_{t}^{t+\pi} G_k(\delta)f(t - \delta) \, d\delta - \int_{t-\pi}^{t} G_k(\delta)f(t - \delta) \, d\delta . \]

\[\text{So,} \]

\[q_k(t) = \int_{t-\pi}^{t+\pi} G_k(\delta)f(t - \delta - \pi f(t - \pi) - \int_{t}^{t+\pi} G_k(\delta) \, d\delta - \int_{t-\pi}^{t} G_k(\delta) \, d\delta . \]

We can take $0 < t \leq \pi$, and $G_k(\delta)$ is an periodicity. From Lemma 2.1, we obtain

\[q_k(t) = 2 \int_{0}^{\pi} G_k(\delta) \, d\delta - 2 \int_{-\pi}^{\pi} G_k(\delta) \, d\delta \]

Since,

\[2 \int_{0}^{\pi} G_k(\delta) \, d\delta \geq 2 \int_{-\pi}^{\pi} G_k(\delta) \, d\delta \]

implies \(q_k(t) \geq 0 \)

Also, for $-\pi < t \leq 0$, we obtained \(q_k(t) \leq 0 \), \(q_k(t) \) non-negative and,

\[|q_k(t) - f| \geq 0, \quad \text{implies} \quad \| q_k(t) - f \|_{P,w} \leq \frac{C}{\kappa} . \]

Theorem 3.2:

Let \(q_k(t) \) be a monotone function in $L_{P,w} \left(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \right)$. Then there exist a piecewise linear operator \(f \), such that

\[\| q_k(t) - f \|_{P,w} \leq \frac{C}{\kappa} \text{ Max}(F) , \]

where \(C \) is a positive constant.

Proof. Let \(-\frac{\pi}{2} = t_1 < t_2 < t_3 < \cdots < t_k = \frac{\pi}{2} \)

We need to make the \(q_k(t) \in \mathbb{T}_k \), such that satisfying

\[\| q_k(t) - f \|_{P,w} \leq \frac{C}{\kappa} \text{ Max}(F) \]

Let \(k_0 = \frac{\pi}{2k-1} \), \(k_i = \frac{k_{i-1} + k_{i+1}}{2} \); For \(i = 1,2, \ldots, \kappa - 1 \).

Thus,

\[f(t) = \text{K} + \sum_{i=0}^{k-1} k_i |t - s_i| \]

\[\cdots (3.1) \]

Where \(-\frac{\pi}{2} = s_1 < s_2 < s_3 < \cdots < s_k = \frac{\pi}{2} \) and \(K \) is a constant.

Let \(q \) be defined by theorem (1) and, let

\[q_k(t) = \text{K} + \sum_{i=0}^{k-1} k_i |t - s_i| \]

\[\cdots (3.2) \]

Where \(q_k \in \mathbb{T}_k \). So, from (3.1), and (3.2), we get

\[\| q_k(t) - f \|_{P,w} \leq \frac{C}{\kappa} \text{ Max}(\Sigma_{i=0}^{k-1} k_i \leq \frac{C}{\kappa} \text{ Max}(p_i) = \frac{C}{\kappa} \text{ Max}(F)) \]

Theorem 3.3:

Let \(f \in L_{P,w} \left(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \right), 1 \leq P < \infty \) and \(C \) is a positive constant independent of \(k \). Then there exist a monotone function \(q_k \), \(q_k \in \mathbb{T}_k \), such that

\[\| f - q_k \|_{P,w} \leq \frac{\text{Max}(C)}{\kappa} . \]

Where \(f \) is the proper piecewise monotone functions.

Proof. Let \(F_k \) be the proper piecewise linear operator define on \(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \) such that its has nodes at the tope of the function \(f \)
at the points $\frac{\pi}{2} + \frac{\pi}{k}$ for $k = 0,1,2,\ldots,k$, and $F_k(t) = f(t)$, since $\|F_k - f\|_{p,w} \leq \frac{C_1}{k}$.

where C is positive constant and $\text{Max}(F) \leq \frac{C_1}{k}$. By using theorem (2), there is a Polynomial $q_k \in \mathbb{T}_k$ such that

$\|F_k - q_k\|_{p,w} \leq \frac{C_2}{k}$.

We need to prove that

$\|f - q_k\|_{p,w} \leq \frac{\text{Max}(C)}{k}$.

So,

$\|f - q_k\|_{p,w} = \left(\int_{\mathbb{T}_k} |f(t) - q_k(t)| \cdot w(t)|^p dt \right)^{\frac{1}{p}}$

$\leq \left(\int_{\mathbb{T}_k} |f(t) - F_k(t) + F_k(t) - q_k(t)| \cdot w(t)|^p dt \right)^{\frac{1}{p}}$

$\leq \left(\int_{\mathbb{T}_k} |f(t) - F_k(t)| \cdot w(t)|^p dt \right)^{\frac{1}{p}} + \left(\int_{\mathbb{T}_k} |F_k(t) - q_k(t)| \cdot w(t)|^p dt \right)^{\frac{1}{p}}$

$\leq \text{Max} \left[\left(\int_{\mathbb{T}_k} |f(t) - F_k(t)| \cdot w(t)|^p dt \right)^{\frac{1}{p}} + \left(\int_{\mathbb{T}_k} |F_k(t) - q_k(t)| \cdot w(t)|^p dt \right)^{\frac{1}{p}} \right]$

$\leq \text{Max} \left[\left(\int_{\mathbb{T}_k} |f(t) - F_k(t)| \cdot w(t)|^p dt \right)^{\frac{1}{p}} + \text{Max} \left(\int_{\mathbb{T}_k} |F_k(t) - q_k(t)| \cdot w(t)|^p dt \right)^{\frac{1}{p}} \right]$

$\leq \text{Max}(C) \|F_k - f\|_{p,w} + \text{Max}(C) \|F_k - q_k\|_{p,w}$

$\leq \frac{\text{Max}(C_1)}{k} + \frac{\text{Max}(C_2)}{k}$

$\leq \frac{\text{Max}(C)}{k}$.

Theorem 3.4:

Let $f \in L_{p,w}([a, b])$, $1 \leq p < \infty$. Then there exist a nearly monotone operator $< p_k >$, $p_k \in \mathbb{P}_k$ such that

$\|p_k - f\|_{p,w} \leq \frac{C}{k} \text{Max}(F)$.

Where f is the proper piecewise monotone on $[a, b]$.

Proof: The proof of this theorem by using the operator $q_k(t) = \cos(t)$ with some modification. Of theorem 3.3

References

أفضل التقريب القياسي المنطقي للدوال الغير مقيدة في الفضاء الموزون

علاء عدنان عوا¹، سلطان حميد مهيدي²
¹قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة الأنبار، رمادي، العراق
²قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة الأنبار، رمادي، العراق

الخلاصة:
في هذا البحث سنعرض تقريب الدوال الفضاء الموزون بواسطة متعددات مثلثية ونقدم نوع من المتعددات القياسية المنطقيّة والتي لها نفس القياسية الموقعية للدوال الغير مقيدة دون تأثير الخطأ الكبير والتي يكون لها الحدود العالي من الحدود العليا وذلـذا، إضافة إلى ذلك، عدم تضمين النقاط المعطوفة لهذه الدوال في الفترات الجزئية المنطقيّة للقـرة الأساسية المغلقة لـذا سوف يتولد لدينا فئة من متعددات الحدود من خلالها نحصل على أفضل تقريب من رتبة بيتا لـذا يكون لأي (ك) يكون لهذه الدوال والمتعددات نفس الرتبة.