Application of GIS Technique to Assess the Habbaniya Lake Water for Human Consumption

Mahmood H. D. Al-Kubaisi1*, Qusai Y. Al-Kubaisi2, Younus I. Al-Saady3, Mufid alhadithi4, and Ammar A. Jasim5

1Department of Applied Geology, College of Science, University of Anbar, Iraq
2Department of Geology, College of Science, University of Baghdad, Iraq
3Iraq Geological Survey, Al-Andalus Square, Baghdad 10068, Iraq
4Engineering Technical College, Middle Technical University, Baghdad, Iraq
5Remote Sensing Center, Ministry of Science and Technology, Baghdad, Iraq

A R T I C L E I N F O
Received: 6 / 4 /2022
Accepted: 19 / 5 / 2022
Available online: 20/7/ 2022
DOI: 10.37652/juaps.2022.174843

Keywords:
Habbaniya Lake, WQI, GIS, Drinking-Water, Western Iraq.

A B S T R A C T
Geographic Information System (GIS) technique was used in this study to produce a map of spatial distribution for each parameter. The result of these parameters was used to calculate irrigation water quality index values, and transferred to the GIS platform for the production of a spatial distribution index of drinking water quality in Habbaniya Lake is depicted on this map. It shows that WQI for all water samples is within the second category (50-100) except (S 5 and S 8) below the second WQI indicates that the water quality of Habbaniya Lake has been considered as conv from excellent water to good water for human drinking. It shows also that the northwes

1. Introduction
Euphrates and Tigris rivers and their tributaries are the main and important sources of fresh surface water in addition to the lakes, and just a little of water resources (14%) originates from groundwater [1]. Habbaniya Lake is one of the largest surface water bodies in the Anbar governorate and one of the most important freshwater resources for the people living in its vicinity. The capacity of Lake Habbaniya can help reduce the impact of droughts and floods by reserving huge quantities of water and using it as a source of water for drinking, industry, and a water system for agriculture.

Biological and Environmental studies have been studied by a large number of researchers to investigate the properties of Habbaniya lake [2]; [3]; [4]; [5]; [6]. The major impacts on the lakes' ecosystem are building a dam, climate change land-use change, and pollution, these factors can affect to a varying degree. Atmosphere assumes a significant job in impacting the connection among precipitation and evaporation that add to increment or reduction of water in the region along these lines its quality changes [7].

*Corresponding author at Department of Applied Geology, College of Science, University of Anbar, Iraq.
E-mail address: mahmoodgeologist@uqanbar.edu.iq
suitability for human consumption based on the WQI map created with a tool of the ArcGIS Spatial Analyst.

1.1. Study Area

Habbaniya Lake is situated in Anbar Governorate to the south of Ramadi city, adjacent to the village of Al-Angoor. This lake is fed by the Euphrates River and has 2 water outlets which are the Majara canal and the Theban canal [21]. Geographically the Habbaniya Lake is located between longitudes of 43˚19ʹ40.6ʺ - 43˚36ʹ34.4ʺ E and latitudes of 33˚10ʹ37.7ʺ - 33˚22ʹ20.8ʺ N occupies about 364 km², with a mean elevation of 44m above sea level Figure 1.

Geologically, the area around Lake is characterized by exposed many formations; involve Early Miocene is the Euphrates, Middle Miocene are Nfayil and Fatha, and Late Miocene is Anjana as well as Quaternary sediments [22].

2. Materials and Methods

2.1. Data Collection

Sixteen Surface water samples were collected in a random manner in polyethylene bottles based on a preliminary field study conducted in various places of Habbaniya Lake, during the month of October 2019 (Figure 1). Chemical parameters pH, TDS, Calcium, Magnesium, Sodium, Potassium, Chloride, Sulfate, and Nitrate ions have been utilized for the appraisal of water suitable for human consumption to develop the WQI technique. The World Health Organization Standard [23] for drinking purposes was utilized to calculate the WQI model.

2.2. Calculation of WQI

The calculation of the WQI model includes several steps: First, unit weights are assigned to the chemical parameters depending on their relative significance in the general nature of water quality for human uses and their crucial function in the quality of water for drinking purposes. Assigned Weights in the WQI technology classified water quality depending on purity degree using the most common parameters to determine water quality [24].

To calculate the unit weight of the WQI parameters, the following equation was used:

$$Wi=K/Si$$

Where: Si is the suggested standard estimation of each parameter. K is the proportionality constant. Where it's determined by utilizing the following formula:

$$K=1.0/\{\sum (1.0/ Si)\}$$

In the subsequent advance (second step), each parameter is assigned a scale of a quality rating (q_i) by means of division concentrations of water samples by its particular suggested standard value, and then the result is multiplied by a hundred [25]; [26]:

$$q_i = \{(X_i - X_0) / (S_i - X_0)\} * 100$$

Where; the quality rating is represented by q_i in the above equation; the chemical parameter concentrations of water sample are represented by X_i in mg/l except Hydrogen Number without unity; while the X_0 is the parameter's optimum value in pure water ($X_0 = 0.0$ except for pH =7.0).

For computing WQI, the index of parameters (SI_i) is determined first which in turn is used in the calculation of the WQI as the equation that follows:

$$SI_i = Wi * qi$$

$$HWQI = \sum_{i=1}^{n} SI_i$$

The statistical physico-chemical parameters, as well as the WQI calculated, are listed in Table 1. Table 2 shows the weighted arithmetic and standard values for each parameter.
3. Results and Discussion

3.1. Correlation Matrix Analysis (CMA)
The CMA of numerous variables is a very valuable tool for improving research and advancing science to new heights [27]. The results of the correlation matrix analysis of the WQI and its parameters in Habbaniya Lake are listed in Table 3.

The analysis' correlation determines the degree of convergence in the link between the chemical variables. The best linear correlation between the 2 chemical variables is shown by the correlation coefficient with a value that is closer to +1.0 or -1.0. The purpose of this method's analysis is to determine the nature of the relationship between the determinants of drinking water chemical parameters and the WQI. There is a strong correlation between water parameters except for NO₃⁻ attributed mainly to the exposed rocks and sediments in the recharge area. The main sources of NO₃⁻ may incorporate overflow or drainage from prepared agrarian terrains, industrial and municipal wastewater, feedlots of animals, urban drainage, dumps of refuse, and decaying plant within the River basin of recharge area. As well as agriculture activities which distribute mainly along the northwestern part of the lake.

Table 3: Water quality parameters and WQI relationship in the concept of a correlation coefficient.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>Standard (Si) [23]</th>
<th>K.</th>
<th>Weight (Wi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>0.1176</td>
<td>0.413</td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td>mg/l</td>
<td>1000</td>
<td>0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>mg/l</td>
<td>75</td>
<td>0.013</td>
<td>0.046</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>mg/l</td>
<td>50</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>Na⁺</td>
<td>mg/l</td>
<td>200</td>
<td>0.005</td>
<td>3.5137</td>
</tr>
<tr>
<td>K⁺</td>
<td>mg/l</td>
<td>10</td>
<td>0.1</td>
<td>0.35</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>mg/l</td>
<td>250</td>
<td>0.004</td>
<td>0.014</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>mg/l</td>
<td>250</td>
<td>0.004</td>
<td>0.014</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>mg/l</td>
<td>50</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Σ1/Si=</td>
<td>0.2846</td>
<td>1</td>
</tr>
</tbody>
</table>

3.2. GIS database generation for water quality

The water samples were chemically analyzed, and the results for the chemical components are presented in Table 1. These results were used to generate a water quality database for the research area using a GIS environment. Each parameter's spatial distribution map (SDM) has been created with the help of the spatial analyst extension, and IDW modeling techniques as shown in Figures (2 to 10).

The TDS values in the Habbaniya Lake waters are within a range of 455 to 811 mg/l (Figure 2). The TDS levels clearly increase in the southeastern direction and all the water samples do not exceed the Iraqi standard for drinking water. Water samples in the research area had pH values ranging from 7.6 to 8.5 (Figure 3) indicating that the groundwater is alkaline.

Fig. 2: Distribution of TDS in Habbaniya Lake
Fig. 3: Distribution of pH in Habbaniya Lake

A spatial distribution map of Ca\(^{2+}\) and Magnesium (Mg\(^{2+}\)) ions has been prepared as shown in Figures (4 and 5). It has been observed that only 6% of the Ca\(^{2+}\) and 12% of Mg\(^{2+}\) exceed the WHO limits.

Fig. 4: Distribution of Ca\(^{2+}\) in Habbaniya Lake

Fig. 5: Distribution of Mg\(^{2+}\) in Habbaniya Lake

Potassium (K\(^{+}\)) concentrations are found in the studied area within WHO's allowed limits as shown in (Figure 6). The sodium ion is commonly found in large concentrations in water because it is present in most rocks and soils and is easy to dissolve. According to [23], the maximum permitted value for sodium-ion is 200.0 mg/l. Hence all of the water samples in Habbaniya Lake are within WHO's allowed limits (Figure 7). Chloride contents in Habbaniya Lake are within WHO's allowed limits (Figure 8).

Fig. 6: Distribution of K\(^{+}\) in Habbaniya Lake

Fig. 7: Distribution of Mg\(^{2+}\) in Habbaniya Lake

Fig. 8: Distribution of Cl\(^{-}\) in Habbaniya Lake

Sulphate contents in Habbaniya Lake ranged from 158 to 304.9 mg/l (Figure 9). Consequently, 50% of the water
samples exceed the permissible limits of [23] water standards. The values of Nitrate (NO_3^-) vary from 2.3 to 6.2 mg/l in water samples (Figure 10).

3.3. Generation of WQI map
The computed WQI values are divided into five categories; according to [28] (Figure 11). Based on calculated WQI values, the reverse interpolation approach (IDW) was used to create the spatial distribution of the water quality index map (Figure 12). Because it illustrates the spatial distribution as an index value for water quality, this map made it easy for decision-makers to evaluate water for drinking purposes over wide areas. It has been observed that the WQI for all water samples is within the second category ($50-100$) except sample 2 and 8 is just below the second category (<50). This indicated that the water in Habbaniya Lake is good for drinking purposes, and towards the center of the lake, the water becomes excellent.

4. Conclusions
The WQI was utilized to total differing parameters and their measurements into a solitary score, showing an image of the water nature of Habbaniya Lake. To evaluate the nature of water quality in Habbaniya Lake for human utilization in an exact way, the human utilization WQI was made in the form of a map. This map gives a clear picture of the water quality distribution. The WQI for all samples in Habbaniya Lake is ($50-100$) and indicate that all water samples are good water for human drinking, except (S 5 and S 8), its value is just below the second category (<50), which mean that the water samples are excellent water for human drinking. The spatial distribution of WQI mapping was completed utilizing GIS. The spatial distribution of water quality is depicted on this map as the index value. Hence it is providing a clear and comprehensive view and shows the outcome that portrays the state of the water in the Habbaniya Lake. Because of the short-scope of WQI, the water quality of Habbaniya Lake has been considered as convergent water quality that fluctuated from excellent water to good water for human drinking.
5. References

تطبيقات تقنية نظم المعلومات الجغرافية (GIS) لتقييم مياه بحيرة الحبانية للاستهلاك البشري

محمود حافظ نماذج الكبيسي 1، قصي ياسين الكبيسي 2، يونس إبراهيم الساعدي 3، مفيد سعيد الحديشي 4، وعمر عبد جاسم 5

قسم الجيولوجيا التطبيقية، كلية العلوم، جامعة الانبار، العراق
E-mail address: mahmoodgeologist@uanbar.edu.iq
قسم علم الأرض، كلية العلوم، جامعة بغداد، العراق
هيئة المسح الجيولوجي العراقي، ساحة الأندلس، بغداد 10068، العراق
كلية الهندسة التقنية، الجامعة التقنية الوسطى، بغداد، العراق
مركز الاستشعار عن بعد، وزارة العلوم والتقنية، بغداد، العراق

الخلاصة:

تم استخدام تقنية نظام المعلومات الجغرافية (GIS) في هذه الدراسة لإنتاج خريطة مؤشر جودة المياه (WQI) لتقييم مياه بحيرة الحبانية لأغراض الشرب. تم جمع ستة عشر عينة من المياه السطحية العذبة وتحليلها للتحقق من المعلمات الفيزيوكيميائية لمؤشر جودة المياه. تتضمن هذه المعلمات المواد الصلبة الذائبة الكلية، الأس الهيدروجيني، والكالسيوم، والمعادن، والصوديوم، والبوتاسيوم، والكربونات، والكربونات والفلور. تم تحليل هذه المعلمات إلى منصة GIS لدراسة خريطة التوزيع المكاني لكل معلمات باستخدام تقنية خريطة التوزيع المكاني. تم استخدام نتائج هذه المعلمات أيضًا لحساب قيم مؤشر جودة مياه الري. تم نقل نتائج هذه المعلمات إلى منصة GIS لبناء خريطة التوزيع المكاني لكل معلمات. تم استخدام هذه خريطة مياه الري لحساب المؤشر WQI لجميع عينات المياه تقع ضمن الفئة الثانية (50-100) و500.

يوضح أن جودة المياه في بحيرة الحبانية تتأرجح من مياه جيدة إلى مياه ممتازة. كما تبين أن الجزء الشمالي الغربي من بحيرة الحبانية هو الأفضل للشرب، حيث أن قناة الورار تأتي من هذا الجزء، والتي تتأخذ مياهها بشكل أساسي من نهر الفرات.