Document Type : Review Paper

Author

Department of Biology, College of Science , University of Sulaimani, Iraq

10.37652/juaps.2022.176423

Abstract

Nanotechnology, particularly nanoemulsions (NEs), is an essential topic that has piqued the interest of researchers over the years. These significant molecules feature a spherical solid structure, a lipophilic amorphous negative charge surface, with small droplet size, and a large surface area, all of which contribute to the promising future of nanomedicine and the importance of NEs in a variety of sectors. The advantages and disadvantages of the components, preparation, characterization, assessment, and applications as a delivery medication system are summarized in this review paper. There are two different methods for NEs preparation: the high and low energy methods. In high energy methods, high-pressure homogenization, ultrasonication micro fluidization, and Spontaneous emulsification are described thoroughly. Low energy approaches emphasize phase inversion temperature, solvent evaporation technology, and hydrogel technologies. Low-energy procedures should be preferred over high-energy methods since they utilize less energy and do not necessitate the use of specific instruments. The transdermal application, aerosolized, ingestible NEs, and parenteral techniques are the four primary lines of biomedical uses of NEs as a delivery strategy. To summarize, these novel strategies are very promising, but additional research is needed to fully understand the relationship between NE formulation and physiological and pathological problems associated with diverse preparation, characterization, and administration routes.

Keywords

Main Subjects

[1]      Krishnaiah, Y. S. (2010). Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J Bioequiv Availab2(2), 28-36. doi:10.4172/jbb.1000027
[2]     Siddiqui, I. A., & Sanna, V. (2016). Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy. Molecular nutrition & food research60(6), 1330-1341. doi:10.1002/mnfr.201600035
[3]     Rahman, H. S., Othman, H. H., Hammadi, N. I., Yeap, S. K., Amin, K. M., Samad, N. A., & Alitheen, N. B. (2020). Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. International journal of nanomedicine15, 2439.
[4]     Aqil, F., Munagala, R., Jeyabalan, J., & Vadhanam, M. V. (2013). Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer letters334(1), 133-141. doi:10.1016/j.canlet.2013.02.032
[5]     McClements, D. J., & Xiao, H. (2012). Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food & function3(3), 202-220.
[6]     Wang, S., Su, R., Nie, S., Sun, M., Zhang, J., Wu, D., & Moustaid-Moussa, N. (2014). Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. The Journal of nutritional biochemistry25(4), 363-376. doi:10.1016/j.jnutbio.
  2013.10.002
[7]      Tayeb, H. H., & Sainsbury, F. (2018). Nanoemulsions in drug delivery: formulation to medical application. Nanomedicine13(19), 2507-2525.
[8]     Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft matter12(11), 2826-2841.
[9]     Savardekar, P., & Bajaj, A. (2016). Nanoemulsions-a review. Inter J Res Pharm and Chem6(2), 312-322.
[10] Jaiswal, M., Dudhe, R., & Sharma, P. K. (2015). Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech5(2), 123-127.. doi:10.1007/s13205-014-0214-0)
[11] Cao, W., Davis, W. G., Kim, J. H., Juan, A., Taylor, A., Hendrickson, G. R., ... & Sambhara, S. (2016). An oil-in-water nanoemulsion enhances immunogenicity of H5N1 vaccine in mice. Nanomedicine: Nanotechnology, Biology and Medicine12(7), 1909-1917.. doi:10.1016/j.nano.2016.04.005
[12]  Kim, C. K., Cho, Y. J., & Gao, Z. G. (2001). Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. Journal of controlled release70(1-2), 149-155.
[13] Tiwari, S. B., & Amiji, M. M. (2006). Nanoemulsion formulations for tumor-targeted delivery. Nanotech Cancer Therapy. pp 723–739
[14] Thakur, N., Garg, G., Sharma, P. K., & Kumar, N. (2012). Nanoemulsions: a review on various pharmaceutical application. Global Journal of Pharmacology6(3), 222-225.,
[15] Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. (2006). Nanoemulsions: formation, structure, and physical properties. Journal of Physics: condensed matter18(41), R635.
[16] Qian, C., Decker, E. A., Xiao, H., & McClements, D. J. (2012). Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chemistry135(3), 1440-1447.
[17] Fryd, M. M., & Mason, T. G. (2012). Advanced nanoemulsions. Annual review of physical chemistry63, 493-518.
[18] Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., ... & Nejati-Koshki, K. (2013). Liposome: classification, preparation, and applications. Nanoscale research letters8(1), 1-9.
[19] Wang, X., Jiang, Y., Wang, Y. W., Huang, M. T., Ho, C. T., & Huang, Q. (2008). Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chemistry108(2), 419-424.
[20] da Silva Marques, T. Z., Santos-Oliveira, R., de Siqueira, L. B. D. O., da Silva Cardoso, V., de Freitas, Z. M. F., & da Silva Ascenção, R. D. C. (2018). Development and characterization of a nanoemulsion containing propranolol for topical delivery. International journal of nanomedicine13, 2827.
[21] Teixeira, H., Dubernet, C., Puisieux, F., Benita, S., & Couvreur, P. (1999). Submicron cationic emulsions as a new delivery system for oligonucleotides. Pharmaceutical research16(1), 30-36.
[22] Bouchemal, K., Briançon, S., Perrier, E., & Fessi, H. (2004). Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. International journal of pharmaceutics280(1-2), 241-251.
[23]  Kumar,S. (2014). Role of nano-emulsion in pharmaceutical sciences-a review. AJRPSB2(1), 1-15
[24] Alvarez-Figueroa, M. J., & Blanco-Mendez, J. (2001). Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from microemulsions. International journal of pharmaceutics215(1-2), 57-65.
[25] Lovelyn, C., & Attama, A. A. (2011). Current state of nanoemulsions in drug delivery. Journal of Biomaterials and Nanobiotechnology2(05), 626.
[26] Trotta, M. (1999). Influence of phase transformation on indomethacin release from microemulsions. Journal of Controlled Release60(2-3), 399-405.
[27]  Meleson, K., Graves, S., & Mason, T. G. (2004). Formation of concentrated nanoemulsions by extreme shear. Soft Materials2(2-3), 109-123.
[28] Whitesides, G. M., & Grzybowski, B. (2002). Self-assembly at all scales. Science295(5564), 2418-2421.
[29] Prasad ,D., Mohanta, G. P.and  Sudhakar,M.(2019).A Review on Preparation and Evaluation of Nanoemulsions. International Journal of Pharma Research and Health Sciences,7(1):2915-22.
[30] Nikam, T. H., Patil, M. P., Patil, S. S., Vadnere, G. P., & Lodhi, S. (2018). Nanoemulsion: A brief review on development and application in Parenteral Drug Delivery. Adv. Pharm. J3(2), 43-54..
[31]  Shakeel, F., Baboota, S., Ahuja, A., Ali, J., Faisal, M. S., & Shafiq, S. (2008). Stability evaluation of celecoxib nanoemulsion containing Tween 80. Thai J Pharm Sci32, 4-9.
[32] Chime, S.A., Kenechukwu, F.C., and Attama, A.A., (2014)Nanoemulsions-Advances in Formulation, Characterization and Applications in Drug Delivery, Ali DS, Application of Nanotechnology in Drug Delivery, Crotia: InTech, 77-111.
[33] Setya, S., Talegaonkar, S., & Razdan, B. K. (2014). Nanoemulsions: formulation methods and stability aspects. World J. Pharm. Pharm. Sci3(2), 2214-2228..
[34] Devarajan, V., & Ravichandran, V. (2011). Nanoemulsions: as modified drug delivery tool. Int J Compr Pharm2(4), 1-6..
[35] Shah ,P., Bhalodia, D.( 2010). Nanoemulsion: A Pharmaceutical Review. Sys Rev Pharm. 1(1):24-32.
[36]  Rai, V. K., Mishra, N., Yadav, K. S., & Yadav, N. P. (2018). Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. Journal of controlled release270, 203-225.
[37] Reza, K. H. (2011). Nanoemulsion as a novel transdermal drug delivery system. International journal of pharmaceutical sciences and research2(8), 1938.
[38] Gadhave, A. D. (2014). Nanoemulsions: Formation, stability and applications. International Journal for Research in Science and Advanced Technologies3(2), 38-43..
[39] Shakeel, F., Baboota, S., Ahuja, A., Ali, J., Faisal, M. S., & Shafiq, S. (2008). Stability evaluation of celecoxib nanoemulsion containing Tween 80. Thai J Pharm Sci32, 4-9.
[40]  Sharma, S. N., & Jain, N. K. (1985). A text book of professional pharmacy. Vallabh Prakashan,201.
[41]  Baboota, S., Shakeel, F., Ahuja, A., Ali, J., & Shafiq, S. (2007). Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. Acta pharmaceutica57(3), 315.
[42] Yukuyama, M. N., Kato, E. T., Lobenberg, R., & Bou-Chacra, N. A. (2017). Challenges and Future Prospects of Nanoemulsion as a Drug Delivery system. Current pharmaceutical design, 23(3), 495–508.
[43] Thiagarajan, P. (2011). Nanoemulsions for drug delivery through different routes. Research in Biotechnology,2(3), 1-13.
[44] Wais, M. O. H. A. M. M. A. D., Samad, A. B. D. U. S., Nazish, I. R. A. M., Khale, A. N. U. B. H. A., Aqil, M. O. H. D., & Khan, M. O. H. I. B. (2013). Formulation Development Ex-Vivo and in-Vivo Evaluation of Nanoemulsion for transdermal delivery of glibenclamide. Int. J. Pharm. Pharm. Sci5(4), 747–754
[45]  Lucca, L. G., de Matos, S. P., Borille, B. T., Dias, D. D. O., Teixeira, H. F., Veiga Jr, V. F., ... & Koester, L. S. (2015). Determination of β-caryophyllene skin permeation/retention from crude copaiba oil (Copaifera multijuga Hayne) and respective oil-based nanoemulsion using a novel HS-GC/MS method. Journal of pharmaceutical and biomedical analysis104, 144-148..
[46] Shaker, D. S., Ishak, R. A., Ghoneim, A., & Elhuoni, M. A. (2019). Nanoemulsion: a review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Scientia Pharmaceutica87(3), 17..
[47] Kim, J. H., Ko, J. A., Kim, J. T., Cha, D. S., Cho, J. H., Park, H. J., & Shin, G. H.(2014). Preparation of a capsaicin-loaded nanoemulsion for improving skin penetration. Journal of agricultural and food chemistry62(3), 725-732.
[48]  Baboota, S., Shakeel, F., Ahuja, A., Ali, J., & Shafiq, S. (2007). Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. Acta pharmaceutica57(3), 315.].
[49] Azarmi, S., Roa, W. H., & Löbenberg, R. (2008). Targeted delivery of nanoparticles for the treatment of lung diseases. Advanced drug delivery reviews60(8), 863-875.
[50] Beija, M., Salvayre, R., Lauth-de Viguerie, N., & Marty, J. D. (2012). Colloidal systems for drug delivery: from design to therapy. Trends in biotechnology30(9), 485-496.
[51]  Amani, A., York, P., Chrystyn, H., & Clark, B. J. (2010). Evaluation of a nanoemulsion-based formulation for respiratory delivery of budesonide by nebulizers. Aaps Pharmscitech11(3), 1147-1151.
[52] Beauchesne, P. R., Chung, N. S., & Wasan, K. M. (2007). Cyclosporine A: a review of current oral and intravenous delivery systems. Drug development and industrial pharmacy33(3), 211-220.
[53] Onoue S, Sato H, Ogawa K et al. (2012). Inhalable dry-emulsion formulation of cyclosporine A with improved anti-inflammatory effects in experimental asthma/COPD-model rats. Eur. J. Pharm. Biopharm. 80(1), 54–60 .
[54] Nesamony, J., Shah, I. S., Kalra, A., & Jung, R. (2014). Nebulized oil-in-water nanoemulsion mists for pulmonary delivery: development, physico-chemical characterization and in vitro evaluation. Drug development and industrial pharmacy, 40(9), 1253–1263.
[55] Pires, A., Fortuna, A., Alves, G., & Falcão, A. (2009). Intranasal drug delivery: how, why and what for? Journal of Pharmacy & Pharmaceutical Sciences12(3), 288-311..
[56] Pardeshi, C. V., & Belgamwar, V. S. (2013). Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert opinion on drug delivery10(7), 957-972.
[57] Ugwoke, M. I., Agu, R. U., Verbeke, N., & Kinget, R. (2005). Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Advanced drug delivery reviews57(11), 1640-1665.
[58] Demisli, S., Mitsou, E., Pletsa, V., Xenakis, A., & Papadimitriou, V. (2020). Development and study of nanoemulsions and nanoemulsion-based hydrogels for the encapsulation of lipophilic compounds. Nanomaterials10(12), 2464
[59] Mistry, A., Stolnik, S., & Illum, L. (2009). Nanoparticles for direct nose-to-brain delivery of drugs. International journal of pharmaceutics379(1), 146-157
[60] Jain, R., & Patravale, V. B. (2009). Development and evaluation of nitrendipine nanoemulsion for intranasal delivery. Journal of biomedical nanotechnology5(1), 62-68.
[61]  Hippalgaonkar, K., Majumdar, S., & Kansara, V. (2010). Injectable lipid emulsions—advancements, opportunities and challenges. Aaps Pharmscitech11(4), 1526-1540.
[62] Rotenberg, M., Rubin, M., Bor, A., Meyuhas, D., Talmon, Y., & Lichtenberg, D. (1991). Physico-chemical characterization of Intralipid™ emulsions. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism1086(3), 265-272.
[63] Halnor, V. V., Pande, V. V., Borawake, D. D., & Nagare, H. S. (2018). Nanoemulsion: A novel platform for drug delivery system. J Mat Sci Nanotechol6(1), 104.
[64] Patel, R. P., & Joshi, J. R. (2012). An overview on nanoemulsion: a novel approach. International Journal of Pharmaceutical Sciences and Research3(12), 4640.
[65]  Khalil, R. M., Basha, M., & Kamel, R. (2015). Nanoemulsions as parenteral drug delivery systems for a new anticancer benzimidazole derivative: formulation and in-vitro evaluation. Egyptian Pharmaceutical Journal14(3), 166.
[66] Chavda, V. P., & Shah, D. (2016). A review on novel emulsification technique: A nanoemulsion. Trends in Drug Delivery3(2), 25-34.
[67]  Kong, F., & Singh, R. P. (2008). Disintegration of solid foods in human stomach. Journal of food science73(5), R67-R80.
[68]  Kotta, S., Khan, A. W., Pramod, K., Ansari, S. H., Sharma, R. K., & Ali, J. (2012). Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert opinion on drug delivery9(5), 585-598.
[69] Ahn, H., & Park, J. H. (2016). Liposomal delivery systems for intestinal lymphatic drug transport. Biomaterials research20(1), 1-6.
[70] Young, N. A., Bruss, M. S., Gardner, M., Willis, W. L., Mo, X., Valiente, G. R. & Wu, L. C. (2014). Oral administration of nano-emulsion curcumin in mice suppresses inflammatory-induced NFκB signaling and macrophage migration. PloS one9(11), e111559.
[71] Wang, X., Jiang, Y., Wang, Y. W., Huang, M. T., Ho, C. T., & Huang, Q. (2008).Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chemistry108(2), 419-424.
[72] Singh, K. K., & Vingkar, S. K. (2008). Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. International Journal of Pharmaceutics347(1-2), 136-143.
[73]  Pandey, G., Mittapelly, N., Valicherla, G. R., Shukla, R. P., Sharma, S., Banala, V. T.,& Mishra, P. R. (2017). P-gp modulatory acetyl-11-keto-β-boswellic acid based nanoemulsified carrier system for augmented oral chemotherapy of docetaxel. Colloids and Surfaces B: Biointerfaces155, 276-286.
[74] Karim,D.H .2020 .’IMPACT OF VITAMIN D-NANOEMULSION ON SPERMATOGENESIS AND OXIDATIVE STATUS IN VITAMIN D DEFICIENT INDUCED ALBINO MALE RATS’. Master’s thesis . University of Sulaimani .Iraq].
[75] Karim, D. H., Mohammed, S. M., & Azeez, H. A. (2021). Impact of vitamin D3 Nanoemulsion on spermatogenesis and antioxidant enzymes in Vitamin D deficient induced albino male rats. Zanco Journal of Pure and Applied Sciences33(1), 55-