Document Type : Review Paper

Author

Department of Biology, College of Sciences, University of Anbar, Al-Anbar, Iraq

10.37652/juaps.2022.176435

Abstract

Plants are exposed to different ecological stress during their life cycle, and because of these tensions, free radicals are shaped. Reactive oxygen species(ROS) have a fundamental ability to support typical plant improvement and stress tolerance. The disruption of the proportionality of ROS generation and antioxidant defense systems is one of the primary effects of biotic and abiotic stress, resulting in an excess of ROS buildup and oxidative damage  in plants. Plants may combat this issue by producing ROS-neutralizing compounds, and both enzymatic and non-enzymatic antioxidant defense mechanisms maintain the proper ratio between ROS generation and detoxification. Ascorbic acid (AsA), glutathione (GSH), flavonoids, Vitamin E (α-tocopherols), and carotenoids are crucial non-enzymatic antioxidants in this context, with a high potential for performing a variety of crucial activities in plants under both stressful and unstressful conditions, in addition to scavenging ROS. This review illustrates the main roles of some non-enzymatic antioxidants in plants subjected to various types of biotic and abiotic stresses.

Keywords

Main Subjects

[1] Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43.‏
[2] Mhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376.‏
[3] Dietz, K. J., Turkan, I., & Krieger-Liszkay, A. (2016). Redox-and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiology, 171(3), 1541-1550.‏
[4] Huang, S., Van Aken, O., & Schwarzländer, M. (2016). Belt K1, Millar AH. The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol, 171, 1551-4.‏
[5] Sandalio, L. M., & Romero-Puertas, M. C. (2015). Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Annals of botany, 116(4), 475-485.‏
[6] Schippers, J. H., Foyer, C. H., & van Dongen, J. T. (2016). Redox regulation in shoot growth, SAM maintenance and flowering. Current opinion in plant biology, 29, 121-128.‏
[7] Nawkar, G. M., Maibam, P., Park, J. H., Sahi, V. P., Lee, S. Y., & Kang, C. H. (2013). UV-induced cell death in plants. International journal of molecular sciences, 14(1), 1608-1628.‏
[8] Kong, X., Tian, H., Yu, Q., Zhang, F., Wang, R., Gao, S., ... & Ding, Z. (2018). PHB3 maintains root stem cell niche identity through ROS-responsive AP2/ERF transcription factors in Arabidopsis. Cell Reports, 22(5), 1350-1363.‏
[9] Zafra, A., Rodríguez-García, M. I., & Alché, J. D. D. (2010). Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biology, 10(1), 1-14.‏
[10] Mittler, R. (2017). ROS are good. Trends in plant science, 22(1), 11-19.‏
[11] Hu, C. H., Wang, P. Q., Zhang, P. P., Nie, X. M., Li, B. B., Tai, L., ... & Chen, K. M. (2020). NADPH oxidases: the vital performers and center hubs during plant growth and signaling. Cells, 9(2), 437.‏
[12] Kaur, K., Kaur, N., Gupta, A. K., & Singh, I. (2013). Exploration of the antioxidative defense system to characterize chickpea genotypes showing differential response towards water deficit conditions. Plant Growth Regulation, 70(1), 49-60.‏
[13] Nadarajah, K. K. (2020). ROS homeostasis in abiotic stress tolerance in plants. International journal of molecular sciences, 21(15), 5208.‏
[14] Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., & Jaćević, V. (2021). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Frontiers in plant science, 11, 552969.‏
[15] Decros, G., Baldet, P., Beauvoit, B., Stevens, R., Flandin, A., Colombié, S., ... & Pétriacq, P. (2019). Get the balance right: ROS homeostasis and redox signalling in fruit. Frontiers in Plant Science, 10, 1091.‏
[16] Paciolla, C., Paradiso, A., & De Pinto, M. C. (2016). Cellular redox homeostasis as central modulator in plant stress response. In Redox state as a central regulator of plant-cell stress responses (pp. 1-23). Springer, Cham.‏
[17] Hasanuzzaman, M., Bhuyan, M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A., & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384.‏
[18] Reczek, C. R., & Chandel, N. S. (2015). ROS-dependent signal transduction. Current opinion in cell biology, 33, 8-13.‏
[19] Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., ... & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681.‏
[20] Panieri, E., & Santoro, M. M. (2015). ROS signaling and redox biology in endothelial cells. Cellular and molecular life sciences, 72(17), 3281-3303.‏
[21] Hasanuzzaman, M., Hossain, M. A., Silva, J. A., & Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In Crop stress and its management: perspectives and strategies (pp. 261-315). Springer, Dordrecht.‏
[22] Hussain, S., Rao, M. J., Anjum, M. A., Ejaz, S., Zakir, I., Ali, M. A., ... & Ahmad, S. (2019). Oxidative stress and antioxidant defense in plants under drought conditions. In Plant abiotic stress tolerance (pp. 207-219). Springer, Cham.‏
[23] Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), 909-930.‏
[24] Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8(4), 94.‏
[25] Martinez, V., Nieves-Cordones, M., Lopez-Delacalle, M., Rodenas, R., Mestre, T. C., Garcia-Sanchez, F., ... & Rivero, R. M. (2018). Tolerance to stress combination in tomato plants: New insights in the protective role of melatonin. Molecules, 23(3), 535.‏
[26] Chourasia, K. N., Lal, M. K., Tiwari, R. K., Dev, D., Kardile, H. B., Patil, V. U., ... & Pramanik, D. (2021). Salinity stress in potato: Understanding physiological, biochemical and molecular responses. Life, 11(6), 545.‏
[27] Waśkiewicz, A., Beszterda, M., & Goliński, P. (2014). Nonenzymatic antioxidants in plants. In Oxidative damage to plants (pp. 201-234). Academic Press.‏
[28] Carpenter, K. J. (2012). The discovery of vitamin C. Annals of nutrition and metabolism, 61(3), 259-264.‏
[29] Smirnoff, N. (2018). Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radical Biology and Medicine, 122, 116-129.‏
[30] Xiao, M., Li, Z., Zhu, L., Wang, J., Zhang, B., Zheng, F., ... & Zhang, Z. (2021). The multiple roles of ascorbate in the abiotic stress response of plants: Antioxidant, cofactor, and regulator. Frontiers in Plant Science, 12, 598173.‏
[31] Elkelish, A., Qari, S. H., Mazrou, Y. S., Abdelaal, K. A., Hafez, Y. M., Abu-Elsaoud, A. M., ... & El Nahhas, N. (2020). Exogenous ascorbic acid induced chilling tolerance in tomato plants through modulating metabolism, osmolytes, antioxidants, and transcriptional regulation of catalase and heat shock proteins. Plants, 9(4), 431.‏
[32] Bilska, K., Wojciechowska, N., Alipour, S., & Kalemba, E. M. (2019). Ascorbic acid—The little-known antioxidant in woody plants. Antioxidants, 8(12), 645.‏
[33] Houben, M., & Van de Poel, B. (2019). 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene. Frontiers in plant science, 695.‏
[34] Foyer, C. H., Kyndt, T., & Hancock, R. D. (2020). Vitamin C in plants: novel concepts, new perspectives, and outstanding issues. Antioxidants & Redox Signaling, 32(7), 463-485.‏
[35] Song, T., Zhang, Q., Wang, H., Han, J., Xu, Z., Yan, S., & Zhu, Z. (2018). OsJMJ703, a rice histone demethylase gene, plays key roles in plant development and responds to drought stress. Plant Physiology and Biochemistry, 132, 183-188.‏
[36] Ding, H., Wang, B., Han, Y., and Li, S. (2020). The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants. J. Exp. Bot. 71, 3405–3416. doi: 10.1093/jxb/eraa107
[37] Gaafar, A. A., Ali, S. I., El-Shawadfy, M. A., Salama, Z. A., Sękara, A., Ulrichs, C., & Abdelhamid, M. T. (2020). Ascorbic acid induces the increase of secondary metabolites, antioxidant activity, growth, and productivity of the common bean under water stress conditions. Plants, 9(5), 627.‏
[38] Khorobrykh, S., Havurinne, V., Mattila, H., and Tyystjärvi, E. (2020). Oxygen and ROS in photosynthesis. Plan. Theory 9:91.
[39] Rajput, V. D., Singh, R. K., Verma, K. K., Sharma, L., Quiroz-Figueroa, F. R., Meena, M., ... & Mandzhieva, S. (2021). Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology, 10(4), 267.‏
[40] Broad, R. C., Bonneau, J. P., Hellens, R. P., & Johnson, A. A. (2020). Manipulation of ascorbate biosynthetic, recycling, and regulatory pathways for improved abiotic stress tolerance in plants. International Journal of Molecular Sciences, 21(5), 1790.‏
[41] Kaur, R., & Nayyar, H. (2014). Ascorbic acid: a potent defender against environmental stresses. In Oxidative damage to plants (pp. 235-287). Academic Press.‏
[42] Saed-Moucheshi, A., Shekoofa, A., & Pessarakli, M. (2014). Reactive oxygen species (ROS) generation and detoxifying in plants. Journal of Plant Nutrition, 37(10), 1573-1585.‏
[43] Seminario, A., Song, L., Zulet, A., Nguyen, H. T., González, E. M., & Larrainzar, E. (2017). Drought stress causes a reduction in the biosynthesis of ascorbic acid in soybean plants. Frontiers in plant science, 8, 1042.‏
[44] Shan, C. J., Zhang, S. L., Li, D. F., Zhao, Y. Z., Tian, X. L., Zhao, X. L., ... & Liu, R. Q. (2011). Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiologiae Plantarum, 33(6), 2533-2540.‏
[45] Srivalli, S., & Khanna-Chopra, R. (2008). Role of glutathione in abiotic stress tolerance. In Sulfur assimilation and abiotic stress in plants (pp. 207-225). Springer, Berlin, Heidelberg.‏
[46] Noctor, G., Mhamdi, A., Chaouch, S., Han, Y. I., Neukermans, J., Marquez‐Garcia, B. E. L. E. N., ... & Foyer, C. H. (2012). Glutathione in plants: an integrated overview. Plant, cell & environment, 35(2), 454-484.‏
[47] Yadav, S. K. (2010). Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African journal of botany, 76(2), 167-179.‏
[48] Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual review of plant biology, 49(1), 249-279.‏
[49] Hasanuzzaman, M., & Fujita, M. (2011). Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biological Trace Element Research, 143(3), 1758-1776.‏
[50] Li, J., & Jin, H. (2007). Regulation of brassinosteroid signaling. Trends in plant science, 12(1), 37-41.‏
[51] Chen, D. F., Zhang, M., Wang, Y. Q., & Chen, X. W. (2012). Expression of γ-tocopherol methyltransferase gene from Brassica napus increased α-tocopherol content in soybean seed. Biologia plantarum, 56(1), 131-134.‏
[52] Liu, S., Ju, J., & Xia, G. (2014). Identification of the flavonoid 3′-hydroxylase and flavonoid 3′, 5′-hydroxylase genes from Antarctic moss and their regulation during abiotic stress. Gene, 543(1), 145-152.‏
[53] Laoué, J., Fernandez, C., & Ormeño, E. (2022). Plant flavonoids in mediterranean species: a focus on flavonols as protective metabolites under climate stress. Plants, 11(2), 172.‏
[54] Treutter, D. (2006). Significance of flavonoids in plant resistance: a review. Environmental Chemistry Letters, 4(3), 147-157.‏
[55] Santos, E. L., Maia, B. H. L. N. S., Ferriani, A. P., & Teixeira, S. D. (2017). Flavonoids: Classification, biosynthesis and chemical ecology. Flavonoids-From biosynthesis to human health, 13, 78-94.‏
[56] Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of nutritional science, 5.‏
[57] Mehla, N., Sindhi, V., Josula, D., Bisht, P., & Wani, S. H. (2017). An introduction to antioxidants and their roles in plant stress tolerance. In Reactive oxygen species and antioxidant Systems in Plants: role and regulation under abiotic stress (pp. 1-23). Springer, Singapore.‏
[58] Ferrer, J. L., Austin, M. B., Stewart Jr, C., & Noel, J. P. (2008). Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry, 46(3), 356-370.‏
[59] Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of nutritional biochemistry, 13(10), 572-584.‏
[60] Leopoldini, M., Russo, N., Chiodo, S., & Toscano, M. (2006). Iron chelation by the powerful antioxidant flavonoid quercetin. Journal of agricultural and food chemistry, 54(17), 6343-6351.‏
[61] Symonowicz, M., & Kolanek, M. (2012). Flavonoids and their properties to form chelate complexes.‏
[62] Dias, M. C., Pinto, D. C., & Silva, A. M. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26(17), 5377.‏
[63] Quadrana, L., Almeida, J., Otaiza, S. N., Duffy, T., Corrêa da Silva, J. V., de Godoy, F., ... & Rossi, M. (2013). Transcriptional regulation of tocopherol biosynthesis in tomato. Plant Molecular Biology, 81(3), 309-325.‏
[64] Badrhadad, A., Piri, K., & Ghiasvand, T. (2013). Increase alpha-tocopherol in cell suspension cultures Elaeagnus angustifolia L. Int J Agri Crop Sci, 5, 1-4.‏
[65] Velasco, L., García‐Navarro, E., Pérez‐Vich, B., & Fernández‐Martínez, J. M. (2013). Selection for contrasting tocopherol content and profile in E thiopian mustard. Plant Breeding, 132(6), 694-700.‏
[66] Szarka, A., Tomasskovics, B., & Bánhegyi, G. (2012). The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. International Journal of Molecular Sciences, 13(4), 4458-4483.‏
[67] Rey, F., Zacarias, L., & Rodrigo, M. J. (2021). Regulation of Tocopherol Biosynthesis During Fruit Maturation of Different Citrus Species. Frontiers in Plant Science, 2255.‏
[68] Mène-Saffrané, L. (2017). Vitamin E biosynthesis and its regulation in plants. Antioxidants, 7(1), 2.‏
[69] Kruk, J., & Trebst, A. (2008). Plastoquinol as a singlet oxygen scavenger in photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1777(2), 154-162.‏
[70] Demmig‐Adams, B., Cohu, C. M., Amiard, V., van Zadelhoff, G., Veldink, G. A., Muller, O., & Adams III, W. W. (2013). Emerging trade‐offs–impact of photoprotectants (PsbS, xanthophylls, and vitamin E) on oxylipins as regulators of development and defense. New Phytologist, 197(3), 720-729.‏
[71] Kumar, V., Khare, T., Sharma, M., & Wani, S. H. (2017). ROS-induced signaling and gene expression in crops under salinity stress. In Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress (pp. 159-184). Springer, Singapore.‏
[72] Tounekti, T., Hernández, I., Müller, M., Khemira, H., & Munné-Bosch, S. (2011). Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis. Plant Physiology and Biochemistry, 49(10), 1165-1176.‏
[73] Gangasani, J. K., Pemmaraju, D. B., Murthy, U. S. N., Rengan, A. K., & Naidu, V. G. M. (2022). Chemistry of herbal biomolecules. In Herbal Biomolecules in Healthcare Applications (pp. 63-79). Academic Press.‏
[74] Latowski, D., Szymanska, R., & Strzałka, K. (2014). Carotenoids involved in antioxidant system of chloroplasts. In Oxidative Damage to Plants (pp. 289-319). Academic Press.‏
[75] Pan, X., Li, M., Wan, T., Wang, L., Jia, C., Hou, Z., ... & Chang, W. (2011). Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nature structural & molecular biology, 18(3), 309-315.‏
[76] Pospíšil, P. (2012). Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(1), 218-231.‏
[77] Babaei, M., Shabani, L., & Hashemi-Shahraki, S. (2022). Improving the effects of salt stress by β-carotene and gallic acid using increasing antioxidant activity and regulating ion uptake in Lepidium sativum L. Botanical Studies, 63(1), 1-10.‏
[78] Rossi, S., & Huang, B. (2022). Carotene-enhanced Heat Tolerance in Creeping Bentgrass in Association with Regulation of Enzymatic Antioxidant Metabolism. Journal of the American Society for Horticultural Science, 147(3), 145-151.‏