Document Type : Review Paper


1 Construction and Project Departments, Al Iraqia University, Baghdad, Iraq

2 Department of Chemistry, College of science, Al-Nahrain university

3 Department of Chemistry ,College of education Al Iraqia University , Baghdad , Iraq



Advanced oxidation processes (AOPs), for instance Ozone, Fenton process, photo Fenton, photolysis, photo-catalysis, and photolysis of hydrogen peroxide and photolysis of ozone have remained inspected widely aimed at the elimination of a wide variety of organic pollutants (OPs).  AOP without UV might not attain complete elimination of a comprehensive group of OPS. When combined with UV, AOPs produce additional free radicals, consequently execution improved squalor of the OPS. This review briefly deliberates the individual AOPs and their limits in the direction of the squalor of OPS comprising diverse useful collections. It too categorizes AOPs and lengthily clarifies their efficiency aimed at the squalor of a wide variety of OPS. Underneath suitable circumstances, AOPs not solitary initiate squalor nonetheless might too principal to whole mineralization. Numerous issues can affect the competence of procedures counting the chemistry of water and the organic molecular structure for instance, the attendance of organic content in water can have an important influence. In general, these organic also change toward high redox possible radicals upon crash with additional reactive species and upsurge the rates of reaction, or might performance by way of radical scavengers and reduction the development competence


Main Subjects

[1]        A. A. Hassan, H. T. Naeem, and R. T. Hadi, “A Comparative Study of Chemical Material Additives on Polyacrylamide to Treatment of Waste Water in Refineries,” IOP Conf. Ser. Mater. Sci. Eng., vol. 518, no. 6, p. 62003, 2019, doi: 10.1088/1757-899X/518/6/062003.
[2]        A. A. Hassan, R. T. Hadi, A. H. Rashid, and A. S. Naje, “Chemical modification of castor oil as adsorbent material for oil content removal from oilfield produced water,” Pollut. Res., vol. 39, no. 4, pp. 892–900, 2020.
[3]        H. K. Sultan, H. Y. Aziz, B. H. Maula, A. A. Hasan, and W. A. Hatem, “Evaluation of Contaminated Water Treatment on the Durability of Steel Piles,” vol. 2020, p. 1269563, 2020.
[4]        F. Y. AlJaberi, B. A. Abdulmajeed, A. A. Hassan, and M. L. Ghadban, “Assessment of an Electrocoagulation Reactor for the Removal of Oil Content and Turbidity from Real Oily Wastewater Using Response Surface Method,” Recent Innov. Chem. Eng. (Formerly Recent Patents Chem. Eng., vol. 13, no. 1, pp. 55–71, 2020, doi: 10.2174/2405520412666190830091842.
[5]        M. K. Ibrahim, A. A. Al-Hassan, and A. S. Naje, “Utilisation of cassia surattensis seeds as natural adsorbent for oil content removal in oilfield produced water,” Pertanika J. Sci. Technol., vol. 27, no. 4, pp. 2123–2138, 2019.
[6]        Y. Li, B. Wu, C. He, F. Nie, and Q. Shi, “Chemosphere Comprehensive chemical characterization of dissolved organic matter in typical point-source refinery wastewaters,” Chemosphere, vol. 286, no. P1, p. 131617, 2022, doi: 10.1016/j.chemosphere.2021.131617.
[7]        G. F. Naser, I. H. Dakhil, and A. A. Hasan, “Organic pollutants removal from oilfield produced water using nano magnetite as adsorbent,” Glob. NEST J., vol. 23, no. 3, pp. 381–387, 2021, doi: 10.30955/gnj.003875.
[8]        A. Saleh Jafer and A. A. Hassan, “Removal of oil content in oilfield produced water using chemically modified kiwi peels as efficient low-cost adsorbent,” J. Phys. Conf. Ser., vol. 1294, no. 7, 2019, doi: 10.1088/1742-6596/1294/7/072013.
[9]        A. H. Rashid, A. A.hassan, R. T. Hadi, and A. S. Naje, “Treatment of oil content in oilfield produced water using chemically modified waste sawdust as biosorbent,” Ecol. Environ. Conserv., vol. 26, no. 4, pp. 1563–1571, 2020.
[10]      W. Wastewater, “the Untapped Resource, The United Nations World Water Development Report.” UNESCO World Water Assessment Programme: Paris, France, 2017.
[11]      I. F. Macías-Quiroga, P. A. Henao-Aguirre, A. Marín-Flórez, S. M. Arredondo-López, and N. R. Sanabria-González, “Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends,” Environ. Sci. Pollut. Res., vol. 28, no. 19, pp. 23791–23811, 2021, doi: 10.1007/s11356-020-11333-7.
[12]      A. A. Hassan and H. T. Naeem, “DEGRADATION OF OILY WASTE WATER IN AQUEOUS PHASE USING SOLAR (ZnO, TiO2 and Al2O3) CATALYSTS,” vol. 15, no. December, pp. 927–934, 2018.
[13]      A. S. Jafer, A. A. Hassan, and Z. T. Naeem, “a Study on the Potential of Moringa Seeds in Adsorption of Organic Content From Water Collected From Oilfield Refinery,” Pakistan J. Biotechnol., vol. 16, no. 1, pp. 27–33, 2019, doi: 10.34016/pjbt.2019.16.1.5.
[14]      I. Ulhaq, W. Ahmad, I. Ahmad, M. Yaseen, and M. Ilyas, “Journal of Water Process Engineering Engineering TiO 2 supported CTAB modified bentonite for treatment of refinery wastewater through simultaneous photocatalytic oxidation and adsorption,” J. Water Process Eng., vol. 43, no. May, p. 102239, 2021, doi: 10.1016/j.jwpe.2021.102239.
[15]      S. Ghosh and S. Chakraborty, “Journal of Water Process Engineering Aerobic granulation of single strain oil degraders : Salt tolerance enhancing organics and nitrogen removal from high-strength refinery wastewater,” J. Water Process Eng., vol. 42, no. May, p. 102104, 2021, doi: 10.1016/j.jwpe.2021.102104.
[16]      G. F. Whale et al., “Chemosphere Assessment of oil refinery wastewater and effluent integrating bioassays , mechanistic modelling and bioavailability evaluation,” Chemosphere, vol. 287, no. P3, p. 132146, 2022, doi: 10.1016/j.chemosphere.2021.132146.
[17]      M. Hussein and A. Megid, “Coagulation and Dissolved Air Floatation for Treatment of Oil-Water Emulsion,” Int. J. Eng. Sci., vol. 3, no. 12, pp. 120–129, 2014.
[18]      G. Alaa El-Din, A. A. Amer, G. Malsh, and M. Hussein, “Study on the use of banana peels for oil spill removal,” Alexandria Eng. J., vol. 57, no. 3, pp. 2061–2068, 2018, doi: 10.1016/j.aej.2017.05.020.
[19]      I. Print and I. Online, “EFFECTIVENESS & ECONOMY OF SAWDUST WOOD ADSORBENTS IN REMOVING ANIONIC DYES OF AQUEOUS SOLUTIONS Haider T. Naeem,” vol. 15, no. 2, pp. 311–320, 2018.
[20]      T. D. Kusworo, N. Aryanti, Qudratun, and D. P. Utomo, “Oilfield produced water treatment to clean water using integrated activated carbon-bentonite adsorbent and double stages membrane process,” Chem. Eng. J., vol. 347, pp. 462–471, 2018, doi: 10.1016/j.cej.2018.04.136.
[21]      B. M. Souza et al., “Removal of recalcitrant organic matter content in wastewater by means of AOPs aiming industrial water reuse,” Environ. Sci. Pollut. Res., vol. 23, no. 22, pp. 22947–22956, 2016, doi: 10.1007/s11356-016-7476-5.
[22]      D. B. Hasan, A. R. Abdul Aziz, and W. M. A. W. Daud, “Oxidative mineralisation of petroleum refinery effluent using Fenton-like process,” Chem. Eng. Res. Des., vol. 90, no. 2, pp. 298–307, 2012, doi: 10.1016/j.cherd.2011.06.010.
[23]      M. Swaminathan, M. Manickavachagam, and M. Sillanpaa, “Advanced oxidation processes for wastewater treatment 2013.” Hindawi, 2014.
[24]      I. H. Ahmed, A. A. Hassan, and H. K. Sultan, “Study of Electro-Fenton Oxidation for the Removal of oil content in refinery wastewater,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1090, no. 1, p. 012005, 2021, doi: 10.1088/1757-899x/1090/1/012005.
[25]      S. Mohammed and P. A. Fasnabi, “Removal of Dicofol from Waste-Water Using Advanced Oxidation Process,” Procedia Technol., vol. 24, pp. 645–653, 2016, doi: 10.1016/j.protcy.2016.05.160.
[26]      S. F. Alturki, A. H. Ghareeb, R. T. Hadi, and A. A. Hassan, “Evaluation of Using Photovoltaic Cell in the Electro-Fenton Oxidation for the Removal of Oil Content in Refinery Wastewater,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1090, no. 1, p. 012012, 2021, doi: 10.1088/1757-899x/1090/1/012012.
[27]      M. C. V. M. Starling, P. H. R. dos Santos, F. A. R. de Souza, S. C. Oliveira, M. M. D. Leão, and C. C. Amorim, “Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse,” Environ. Sci. Pollut. Res., vol. 24, no. 14, pp. 12515–12528, 2017, doi: 10.1007/s11356-016-7395-5.
[28]      S. Jiménez et al., “Integrated processes for produced water polishing: Enhanced flotation/sedimentation combined with advanced oxidation processes,” Chemosphere, vol. 168, pp. 309–317, 2017.
[29]      M. M. Amin, M. M. G. Mofrad, H. Pourzamani, S. M. Sebaradar, and K. Ebrahim, “Treatment of industrial wastewater contaminated with recalcitrant metal working fluids by the photo-Fenton process as post-treatment for DAF,” J. Ind. Eng. Chem., vol. 45, pp. 412–420, 2017.
[30]      E. M. Cuerda-Correa, M. F. Alexandre-Franco, and C. Fernández-González, “Advanced oxidation processes for the removal of antibiotics from water. An overview,” Water (Switzerland), vol. 12, no. 1, 2020, doi: 10.3390/w12010102.
[31]      A. D. Bokare and W. Choi, “Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes,” J. Hazard. Mater., vol. 275, pp. 121–135, 2014.
[32]      I. Velo-Gala, J. J. López-Peñalver, M. Sánchez-Polo, and J. Rivera-Utrilla, “Comparative study of oxidative degradation of sodium diatrizoate in aqueous solution by H2O2/Fe2+, H2O2/Fe3+, Fe (VI) and UV, H2O2/UV, K2S2O8/UV,” Chem. Eng. J., vol. 241, pp. 504–512, 2014, doi: 10.1016/j.cej.2013.10.036.
[33]      S. Jiménez, M. M. Micó, M. Arnaldos, F. Medina, and S. Contreras, “State of the art of produced water treatment,” Chemosphere, vol. 192, pp. 186–208, 2018, doi: 10.1016/j.chemosphere.2017.10.139.
[34]      A. Kumar, N. K. Srivastava, and P. Gera, “Removal of color from pulp and paper mill wastewater- methods and techniques- A review,” J. Environ. Manage., vol. 298, no. April, p. 113527, 2021, doi: 10.1016/j.jenvman.2021.113527.
[35]      A. Rodríguez et al., “Ozone-based technologies in water and wastewater treatment,” Handb. Environ. Chem. Vol. 5 Water Pollut., vol. 5 S2, no. February, pp. 127–175, 2008, doi: 10.1007/698_5_103.
[36]      M. A. Hassaan, A. El Nemr, and F. F. Madkour, “Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater,” Egypt. J. Aquat. Res., vol. 43, no. 1, pp. 11–19, 2017, doi: 10.1016/j.ejar.2016.09.006.
[37]      A. Fakhru’l-Razi, A. Pendashteh, L. C. Abdullah, D. R. A. Biak, S. S. Madaeni, and Z. Z. Abidin, “Review of technologies for oil and gas produced water treatment,” J. Hazard. Mater., vol. 170, no. 2–3, pp. 530–551, 2009, doi: 10.1016/j.jhazmat.2009.05.044.
[38]      I. W. K. Suryawan, A. S. Afifah, and G. Prajati, “Pretreatment of endek wastewater with ozone/hydrogen peroxide to improve biodegradability,” AIP Conf. Proc., vol. 2114, no. June, 2019, doi: 10.1063/1.5112455.
[39]      H. Farzaneh, K. Loganathan, J. Saththasivam, and G. McKay, “Ozone and ozone/hydrogen peroxide treatment to remove gemfibrozil and ibuprofen from treated sewage effluent: Factors influencing bromate formation,” Emerg. Contam., vol. 6, pp. 225–234, 2020, doi: 10.1016/j.emcon.2020.06.002.
[40]      B. H. Diya’uddeen, S. R. Pouran, A. R. A. Aziz, S. M. Nashwan, W. M. A. W. Daud, and M. G. Shaaban, “Hybrid of Fenton and sequencing batch reactor for petroleum refinery wastewater treatment,” J. Ind. Eng. Chem., vol. 25, pp. 186–191, 2015.
[41]      K. A. Alakoul, A. S. Atiyah, M. Z. Azeez, and A. A. Hassan, “ Photovoltaic cell Electro-Oxidation for Oil Removal in oil field produced H 2 O ,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1090, no. 1, p. 012072, 2021, doi: 10.1088/1757-899x/1090/1/012072.
[42]      A. S. Atiyah, A. A. A. Al-Samawi, and A. A. Hassan, “Photovoltaic cell electro-Fenton oxidation for treatment oily wastewater,” AIP Conf. Proc., vol. 2235, no. May, 2020, doi: 10.1063/5.0008937.
[43]      A. Elhalil et al., “Factorial experimental design for the optimization of catalytic degradation of malachite green dye in aqueous solution by Fenton process,” Water Resour. Ind., vol. 15, pp. 41–48, 2016, doi: 10.1016/j.wri.2016.07.002.
[44]      H. T. Naeem, A. A. Hassan, and R. T. Al-Khateeb, “Wastewater-(Direct red dye) treatment-using solar fenton process,” J. Pharm. Sci. Res., vol. 10, no. 9, pp. 2309–2313, 2018.
[45]      N. A. Youssef, S. A. Shaban, F. A. Ibrahim, and A. S. Mahmoud, “Degradation of methyl orange using Fenton catalytic reaction,” Egypt. J. Pet., vol. 25, no. 3, pp. 317–321, 2016, doi: 10.1016/j.ejpe.2015.07.017.
[46]      W. F. Elmobarak, B. H. Hameed, F. Almomani, and A. Z. Abdullah, “A Review on the Treatment of Petroleum Refinery Wastewater Using Advanced Oxidation Processes,” Catalysts, vol. 11, no. 7, p. 782, 2021, doi: 10.3390/catal11070782.
[47]      A. Prasetyaningrum, T. Riyanto, M. Djaeni, and W. Widayat, “Photochemical oxidation process of copper from electroplating wastewater: Process performance and kinetic study,” Processes, vol. 8, no. 10, pp. 1–19, 2020, doi: 10.3390/pr8101276.
[48]      M. I. Litter, “Introduction to Photochemical Advanced Oxidation Processes for Water Treatment,” Environ. Photochem. Part II, vol. 2, no. September, pp. 325–366, 2005, doi: 10.1007/b138188.
[49]      M. A. Oturan and J. J. Aaron, “Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review,” Crit. Rev. Environ. Sci. Technol., vol. 44, no. 23, pp. 2577–2641, 2014, doi: 10.1080/10643389.2013.829765.
[50]      S. Haji, B. Benstaali, and N. Al-Bastaki, “Degradation of methyl orange by UV/H2O2 advanced oxidation process,” Chem. Eng. J., vol. 168, no. 1, pp. 134–139, 2011, doi: 10.1016/j.cej.2010.12.050.
[51]      J. J. Rueda-Márquez, M. Sillanpää, P. Pocostales, A. Acevedo, and M. A. Manzano, “Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: Photolysis and catalytic wet oxidation,” Water Res., vol. 71, pp. 85–96, 2015, doi: 10.1016/j.watres.2014.12.054.
[52]      H. Hadiyanto, M. Christwardana, D. Indah Pratiwi, S. Silviana, M. Syarifudin, and A. Khoironi, “Rubber wastewater treatment using UV, ozone, and UV/ozone and its effluent potency for microalgae Spirulina platensis cultivation medium,” Cogent Eng., vol. 7, no. 1, 2020, doi: 10.1080/23311916.2020.1797980.
[53]      Z. Jing and S. Cao, “Combined application of UV photolysis and ozonation with biological aerating filter in tertiary wastewater treatment,” Int. J. Photoenergy, vol. 2012, 2012, doi: 10.1155/2012/140605.
[54]      A. Fernandes, P. Makoś, Z. Wang, and G. Boczkaj, “Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents,” Chem. Eng. J., vol. 391, p. 123488, 2020, doi: 10.1016/j.cej.2019.123488.
[55]      B. A. Jasim, M. H. Al-Furaiji, A. I. Sakran, and W. I. Abdullah, “A competitive study using UV and ozone with H2O2 in treatment of oily wastewater,” Baghdad Sci. J., vol. 17, no. 4, pp. 1177–1182, 2020, doi: 10.21123/bsj.2020.17.4.1177.
[56]      A. Buthiyappan, A. R. Abdul Aziz, and W. M. A. Wan Daud, “Degradation performance and cost implication of UV-integrated advanced oxidation processes for wastewater treatments,” Rev. Chem. Eng., vol. 31, no. 3, pp. 263–302, 2015, doi: 10.1515/revce-2014-0039.
[57]      E. E. Ebrahiem, M. N. Al-Maghrabi, and A. R. Mobarki, “Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology,” Arab. J. Chem., vol. 10, pp. S1674–S1679, 2017, doi: 10.1016/j.arabjc.2013.06.012.
[58]      J. Yang, L. Hong, Y. H. Liu, J. W. Guo, and L. F. Lin, “Treatment of oilfield fracturing wastewater by a sequential combination of flocculation, Fenton oxidation and SBR process,” Environ. Technol. (United Kingdom), vol. 35, no. 22, pp. 2878–2884, 2014, doi: 10.1080/09593330.2014.924570.
[59]      P. Palaniandy, H. B. A. Aziz, and S. Feroz, “Treatment of petroleum wastewater using combination of solar photo-two catalyst TiO2 and photo-Fenton process,” J. Environ. Chem. Eng., vol. 3, no. 2, pp. 1117–1124, 2015.
[60]      H. J. Jung, J. S. Hong, and J. K. Suh, “A comparison of fenton oxidation and photocatalyst reaction efficiency for humic acid degradation,” J. Ind. Eng. Chem., vol. 19, no. 4, pp. 1325–1330, 2013, doi: 10.1016/j.jiec.2012.12.036.
[61]      A. A. Hassan, F. Y. AlJaberi, and R. T. AL-Khateeb, “Batch and Continuous Photo-Fenton Oxidation of Reactive-Red Dye from Wastewater,” J. Ecol. Eng., vol. 23, no. 1, pp. 14–23, 2022.
[62]      S. S. da Silva, O. Chiavone-Filho, E. L. de Barros Neto, and E. L. Foletto, “Oil removal from produced water by conjugation of flotation and photo-Fenton processes,” J. Environ. Manage., vol. 147, pp. 257–263, 2015, doi: 10.1016/j.jenvman.2014.08.021.
[63]      Y. Bao, Q. Yan, J. Ji, B. Qiu, J. Zhang, and M. Xing, “Graphene-Based Photo-Fenton Catalysts for Pollutant Control,” Trans. Tianjin Univ., vol. 27, no. 2, pp. 110–126, 2021, doi: 10.1007/s12209-020-00276-2.
[64]      S. Sarkar, S. Ali, L. Rehmann, G. Nakhla, and M. B. Ray, “Degradation of estrone in water and wastewater by various advanced oxidation processes,” J. Hazard. Mater., vol. 278, pp. 16–24, 2014.
[65]      Y. Wang, F. A. Roddick, and L. Fan, “Direct and indirect photolysis of seven micropollutants in secondary effluent from a wastewater lagoon,” Chemosphere, vol. 185, pp. 297–308, 2017, doi: 10.1016/j.chemosphere.2017.06.122.
[66]      C. C. Ryan, D. T. Tan, and W. A. Arnold, “Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent,” Water Res., vol. 45, no. 3, pp. 1280–1286, 2011, doi: 10.1016/j.watres.2010.10.005.
[67]      O. Pourehie and J. Saien, “Solar driven homogeneous sodium hypochlorite / iron process in treatment of petroleum refinery wastewater for reusing,” Sep. Purif. Technol., vol. 274, no. May, p. 119041, 2021, doi: 10.1016/j.seppur.2021.119041.
[68]      L. Karimi, S. Zohoori, and M. E. Yazdanshenas, “Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst,” J. Saudi Chem. Soc., vol. 18, no. 5, pp. 581–588, 2014, doi: 10.1016/j.jscs.2011.11.010.
[69]      M. Yasmina, K. Mourad, S. H. Mohammed, and C. Khaoula, “Treatment heterogeneous photocatalysis; Factors influencing the photocatalytic degradation by TiO2,” Energy Procedia, vol. 50, pp. 559–566, 2014, doi: 10.1016/j.egypro.2014.06.068.
[70]      S. K. Kansal, A. Hassan Ali, and S. Kapoor, “Photocatalytic decolorization of biebrich scarlet dye in aqueous phase using different nanophotocatalysts,” Desalination, vol. 259, no. 1–3, pp. 147–155, 2010, doi: 10.1016/j.desal.2010.04.017.
[71]      E. K. Tetteh, S. Rathilal, and D. B. Naidoo, “Photocatalytic degradation of oily waste and phenol from a local South Africa oil refinery wastewater using response methodology,” Sci. Rep., vol. 10, no. 1, pp. 1–12, 2020, doi: 10.1038/s41598-020-65480-5.
[72]      D. al deen A. Aljuboury, P. Palaniandy, H. B. A. Aziz, and S. Feroz, “WITHDRAWN: Comparison and performance of petroleum wastewater treatment using photocatalytic TiO2, photo Fenton, TiO2/Fenton and TiO2/Fenton/ZnO processes,” Water Resour. Ind., 2016, doi: 10.1016/j.wri.2016.02.003.
[73]      A. Gupta, J. R. Saurav, and S. Bhattacharya, “Solar light based degradation of organic pollutants using ZnO nanobrushes for water filtration,” RSC Adv., vol. 5, no. 87, pp. 71472–71481, 2015, doi: 10.1039/c5ra10456d.
[74]      A. H. Jawad, N. S. A. Mubarak, M. A. M. Ishak, K. Ismail, and W. I. Nawawi, “ Kinetics of photocatalytic decolourization of cationic dye using porous TiO 2 film ,” J. Taibah Univ. Sci., vol. 10, no. 3, pp. 352–362, 2016, doi: 10.1016/j.jtusci.2015.03.007.
[75]      A. Mills and S. Le Hunte, “An overview of semiconductor photocatalysis,” J. Photochem. Photobiol. A Chem., vol. 108, no. 1, pp. 1–35, 1997.
[76]      A. Fujishima, T. N. Rao, and D. A. Tryk, “Titanium dioxide photocatalysis,” J. Photochem. Photobiol. C Photochem. Rev., vol. 1, no. 1, pp. 1–21, 2000.
[77]      R. Vinu and G. Madras, “Photocatalytic Degradation of Water Pollutants Using Nano-TiO 2,” in Energy efficiency and renewable energy through nanotechnology, Springer, 2011, pp. 625–677.
[78]      A. Corma, M. Iglesias, C. Del Pino, and F. Sanchez, “New rhodium complexes anchored on modified USY zeolites. A remarkable effect of the support on the enantioselectivity of catalytic hydrogenation of prochiral alkenes,” J. Chem. Soc. Chem. Commun., no. 18, pp. 1253–1255, 1991.
[79]      A. D’Agata et al., “Enhanced toxicity of ‘bulk’titanium dioxide compared to ‘fresh’and ‘aged’nano-TiO2 in marine mussels (Mytilus galloprovincialis),” Nanotoxicology, vol. 8, no. 5, pp. 549–558, 2014.
[80]      M. Chen, X. Sun, Z. Qiao, Q. Ma, and C. Wang, “Anatase-TiO2 nanocoating of Li4Ti5O12 nanorod anode for lithium-ion batteries,” J. Alloys Compd., vol. 601, pp. 38–42, 2014.
[81]      Y. Guo, Y. Hu, W. Sigle, and J. Maier, “Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks,” Adv. Mater., vol. 19, no. 16, pp. 2087–2091, 2007.
[82]      J. Xu, K. Li, W. Shi, R. Li, and T. Peng, “Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells,” J. Power Sources, vol. 260, pp. 233–242, 2014.
[83]      D. Grosso et al., “Highly porous TiO2 anatase optical thin films with cubic mesostructure stabilized at 700 C,” Chem. Mater., vol. 15, no. 24, pp. 4562–4570, 2003.
[84]      M. Fujimoto et al., “Ti O 2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching,” Appl. Phys. Lett., vol. 89, no. 22, p. 223509, 2006.
[85]      D. Ramimoghadam, S. Bagheri, and S. B. Abd Hamid, “Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material,” Biomed Res. Int., vol. 2014, 2014.
[86]      H. Kominami et al., “Novel synthesis of microcrystalline titanium (IV) oxide having high thermal stability and ultra-high photocatalytic activity: thermal decomposition of titanium (IV) alkoxide in organic solvents,” Catal. Letters, vol. 46, no. 3–4, pp. 235–240, 1997.
[87]      J. C. Crittenden and B. M. W. Harza, Water treatment: principles and design. Wiley, 2005.
[88]      C. C. Chen, C. S. Lu, Y. C. Chung, and J. L. Jan, “UV light induced photodegradation of malachite green on TiO2 nanoparticles,” J. Hazard. Mater., vol. 141, no. 3, pp. 520–528, 2007.
[89]      P. R. Gogate and A. B. Pandit, “A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions,” Adv. Environ. Res., vol. 8, no. 3–4, pp. 501–551, 2004.
[90]      N. Muhd Julkapli, S. Bagheri, and S. Bee Abd Hamid, “Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes,” Sci. World J., vol. 2014, 2014, doi: 10.1155/2014/692307.
[91]      A. A. Hassan and K. M. M. Al-Zobai, “Chemical oxidation for oil separation from oilfield produced water under uv irradiation using titanium dioxide as a nano-photocatalyst by batch and continuous techniques,” Int. J. Chem. Eng., vol. 2019, 2019, doi: 10.1155/2019/9810728.
[92]      S. Y. Lee and S. J. Park, “TiO2 photocatalyst for water treatment applications,” J. Ind. Eng. Chem., vol. 19, no. 6, pp. 1761–1769, 2013, doi: 10.1016/j.jiec.2013.07.012.
[93]      K. M. M. Al-zobai, A. A. Hassan, and N. O. Kariem, “Removal of amoxicillin from polluted water using UV/TiO2, UV/ZnO/TiO2, and UV/ZnO,” Solid State Technol., vol. 63, no. 3, pp. 3567–3575, 2020.
[94]      M. E. Ali, M. M. Rahman, S. M. Sarkar, and S. B. A. Hamid, “Heterogeneous metal catalysts for oxidation reactions,” J. Nanomater., vol. 2014, 2014, doi: 10.1155/2014/192038.
[95]      F. Agueniou et al., “Impact of TiO 2 –Cation Exchange Resin Composite on the Removal of Ethyl Violet,” Arab. J. Sci. Eng., vol. 43, no. 5, pp. 2451–2463, 2018, doi: 10.1007/s13369-017-2857-8.
[96]      H. Benhebal et al., “Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol-gel process,” Alexandria Eng. J., vol. 52, no. 3, pp. 517–523, 2013, doi: 10.1016/j.aej.2013.04.005.
[97]      S. Anandan, N. Ohashi, and M. Miyauchi, “ZnO-based visible-light photocatalyst: Band-gap engineering and multi-electron reduction by co-catalyst,” Appl. Catal. B Environ., vol. 100, no. 3–4, pp. 502–509, 2010.
[98]      N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2,” J. Photochem. Photobiol. A Chem., vol. 162, no. 2–3, pp. 317–322, 2004.
[99]      M. A. Behnajady, N. Modirshahla, and R. Hamzavi, “Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst,” J. Hazard. Mater., vol. 133, no. 1–3, pp. 226–232, 2006.