Document Type : Review Paper


1 Department of physics, College of science , University of Anbar , Ramadi, Iraq

2 Department of medical physics, College of applied science, university of Fallujah, Fallujah, Iraq

3 Department of applied chemistry, College of Applied Science, University of Fallujah, Fallujah Iraq



Some density function theories ( DFT/ 6 - 311++ G (3 df, 3 pd ) basis set   ) methods  with as  BPV86, B3PV91, B3LYP, LSDA, MPW1PW91, HCTH,  THCTH, PBE1PBE, PBEPBE, and T PSSTPSS  with Hartree– Fock (HF) and Ab initio methods. These calculations were  at  quadratic -  complete basis set (CBS-  Q method ).  Results of these studies  appear that DFT results overestimate  and Hartree– Fock results underestimate of EA’s values as compared  with experimental calculations. Good convergence with experimental studies  of electron affinities  in density functional theory methods. Electron affinities of LiBr, NaBr, F2 and OH diatomic molecules  have been calculated  using   methods above.  The electron affinity values that have been extended using THCTH method are overvalued to OH and F2 compounds and dropped to NaBr and LiBr compounds. Also CBS-Q theory or method provides good calculations for OH, LiBr and NaBr molecules, therefore, the electron affinity result is lower than data in  experiment one, by ( 1 eV) that in cases of  F2  moelcule.


Main Subjects

[1]     Loucas G. C. & James K. O., Fundamental Electron-Molecule Interactions and Their Technological Significance, Physics of Atoms and Molecules book series (PAMO), Kluwer Academic/Plenum Publishers, New York 2004, pp. 1-59.
[2]      James K. O., Electron collision data for plasma-processing gases Advances in Atomic, Molecular, and Optical Physics 44, 2001, 59-98
[3]      Karwasz G.Ph., Brusa R.Sh., Zecca A., One century of experiments on electron– atom and molecule scattering. A critical review of integral cross-sections. III. Hydrocarbon and halide, Le Rivista del Nuovo Cimento 24 (4), 2001, pp. 1 – 101.
[4]     Karwasz G.P., Zecca A., Brusa R.S., Electron Scattering with Molecules. Total, Landolt– Börstein New Series, Volume I/17, Photon and Electron Interaction, with Atoms, Molecules and Ions, Chapter VI.1., Springer-Verlag, Berlin, Heidelberg, 2003, pp. 6.1 – 6.51.
[5]      Dhaidan. K. K , Adil. N. A,  Abubaker. S. M., Theoretical Study of Structural Properties and Energies of a 2-Aminophenol -Vanillin Molecule, IOP Conf. Series: Journal of Physics: Conf. Series 1178, 2019, 012007 .
[6]      M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M.Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L.Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J.A. Montgomery, J.E. Peralta, F. Ogliaro,M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N.Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.Cossi, N. Rega, J.M. Millam, M. Klene,J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P.Salvador, J.J. Dannenberg, S. Dapprich,. A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowskiand D.J. Fox,l Gaussian 09,Revision, B.01,Gaussian Inc. J. Comput. Chem. 30,  2009,  2785.
[7]     Frisch M. Jbinkley J.S., Pople J.A., Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis set, Journal of Chemical Physics 80 (7), 1984, p. 3265.
[8]      Lundqvist B.I., Gunnarsson O.,  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism, Physical Review B 13 (10), 1976, pp. 4274 – 4298.
[9]     Becke A.D., Density-functional thermochemistry. III. The role of exact exchange, Journal of Chemical Physics 98 (7), 1993, pp. 5648 – 5652.
[10]  Vosko S.H., Nusair M., Wilk L., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis, Canadian Journal of Physics 58 (8), 1980, pp. 1200 – 1211.
[11] Perdew J.P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Physical Review B 33 (12), 1986, pp. 8822 – 8824.
[12]  Lee C., Parr R.G., Yang W., Development of the Colle– Salvetti correlation-energy formula into a functional of the electron density, Physical Review B 37 (2), 1988, pp. 785 – 789.
[13]  Burke K., Wang Y., Perdew J. P., [In] Electronic Density Functional Theory: Recent Progress and New Directions, [Eds.] Dobson J.F., Vignale G., Das M.P., Plenum, 1998.
[14]  Perdew J.P.,  Electronic Structure of Solids, Akademie Verlag, Berlin, 1991, p. 11.
[15]  Perdew J.P., Vosko S.H., Chevary J.A., Jackson K.A., Singh D.J., Pederson M.R.,  Fiolhais C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B 46 (11), 1992, pp. 6671 – 6687.
[16]  Perdew J.P., Vosko S.H., Chevary J.A., Pederson M.R., Jackson K.A., Fiolhais C., Singh D.J., Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B 48 (7), 1993, p. 4978.
[17] Perdew J.P., Wang Y., Burke K., Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Physical Review B 54 (23), 1996, pp. 16533 – 16539.
[18]  Barone V., Adamo C., Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, Journal of Chemical Physics 108 (2), 1998, pp. 664 – 675.
[19]  Perdew J.P., Ernzerhof M., Burke K., Generalized gradient approximation made simple, Physical Review Letters 77 (18), 1996, pp. 3865 – 3868.
[20] Perdew J.P., Burke K., Ernzerhof M., Erratum: Generalized gradient approximation made simple, Physical Review Letters 78 (7), 1997, p. 1396.
[21] Hamprecht F.A., Cohen A.J., Tozer D.J., Handy N.C., Development and assessment of new exchange-correlation functionals, Journal of Chemical Physics 109 (15), 1998, pp. 6264 – 6271.
[22] Boese A.D., Sprik M., Doltsinis N.L., Handy N.C., New generalized gradient approximation functionals, Journal of Chemical Physics 112 (4), 2000, pp. 1670 – 1678.
[23] Boese A.D., Handy N.C., A new parametrization of exchange–correlation generalized gradient approximation functionals, Journal of Chemical Physics 114 (13), 2001, pp. 5497 – 5503.
[24]  Tao J.M., Staroverov V.N., Perdew J.P., Scuseria G.E., Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids, Physical Review Letters 91 (14), 2003, p. 146401.
[25]  Montgomery J.A., Petersson G.A., Ochterski J.W., A complete basis set model chemistry. IV. An improved atomic pair natural orbital method, Journal of Chemical Physics 101 (7), 1994, pp. 5900 – 5909.
[26]  Hout Jr. R.F., Hehre W.J., Levi B.A., Effect of electron correlation on theoretical vibrational frequencies, Journal of Computational Chemistry 3 (2), 1982, pp. 234 – 250.
[27]  Artau A., Hill B.T., Nizzi K.E., Wenthold P.G., Sunderlin L.S., Bond dissociation energy in trifluoride ion, Journal of the American Chemical Society 122 (43), 2000, pp. 10667 – 10670.
[28]  Squires   R.R., Wenthold P.G., Bond dissociation energies of F –   and HF –.   A gas-phase experimental and G2 theoretical study, The Journal of Physical Chemistry 99 (7), 1995, pp. 2002 – 2005.
[29] Kim J.B., Smith J.R., Lineberger W.C., High-resolution threshold photodetachment spectroscopy of OH–, Physical Review A 55 (3), 1997, pp. 2036 – 2043.
[30]  Franklin J.L., Harland P.W., Partitioning of excess energy in dissociative resonance capture processes, Journal of Chemical Physics 61 (5), 1974, pp. 1621 – 1636.
[31]  Kim J.B., Smith J.R., Lineberger W.C., High-resolution threshold photodetachment spectroscopy of OH–, Physical Review A 55 (3), 1997, pp. 2036 – 2043.
[32]  Leopold D.G., Miller T.M., Lineberger W.C., Murray K.K., Electron affinities of the alkali halides and the structure of their negative ions, Journal of Chemical Physics 85 (5), 1986, pp. 2368 – 2375.
[33]  NIST Chemistry Web Book, NIST Standard Reference Database Number 69, 2008,  National Institute of Standards and Technology, Gaithersburg, MD 20899;