Best Co-Approximation In Weighted Space

Alaa Adnan Auad^{*}, Alaa Hussain

Department of Mathematics, College of Education for pure science, University of Anbar, Ramadi, Iraq

co-a proximal and specification co- Chebyshev subspaces.

ABSTRACT

ARTICLE INFO

Received: 21 / 04 / 2022 Accepted: 16 / 05 / 2022 Available online: 22 /12/ 2022 DOI: 10.37652/juaps.2022.176475

Keywords:

Weighted space, co – approximation, co – Chebyshev and coaproximalIntroduction,

Copyright©Authors, 2022, College of Sciences, University of Anbar. This is an open-access article under the CC BY 4.0 license (<u>http://creativecommons.org/licens</u> <u>es/by/4.0/</u>).

1. INTRODUCTION

Estimates in approximation theory that (cf [1], [2], [3], [4]and [5])has recently introduced [6] and [7] As in the case of best approximation, the theory of best co-approximation has been developed to a from obvious in metric space and Banach Characterization, Characterization of co-a proximal space by [8], [9] and [10].

In a class of papers many authors have proved many results on best co approximation in metric space and normed space as [11] and [12]. In this paper introduced some results on existence of functions of best co- approximation specifications of co-a proximal and specification co- Chebyshev subspaces.

Let X = [-1,1], W the set of all weighted functions which as $w: X \to R^+$ and $L_{p,w}(X)$ the space of all unbounded functions, $1 \le p < \infty$ with norm for $f \in L_{p,w}(X)$,

$$||f||_{p,w} = \left(\int_{-1}^{1} |f(x)w(x)|^{p} dx\right)^{\frac{1}{p}} < \infty.$$

Let A be a subspace of $L_{p,w}(X)$, $f \in L_{p,w}(X)$, find a function a^* in A such that

$$||f - a^*||_{p,w} \le ||f - a||_{p,w}$$
 for every $a \in A$

We say that a^* is best co approximation of f and the set of best approximation of f by the functions of Ais denoted by \mathcal{P}_{δ} . Clearly

 $\mathcal{P}_{\delta}(f) = \left\{ \bigcap_{a \in A} \overline{\mathbb{B}}(f, \|f - a\|_{p, w}) \right\} \cap A$

In this paper, we present best co- approximation in weighted space. The results

considered are these of existence of functions of best co- approximation, specifications of

Where $\overline{B}(f, ||f - a||_{p,w})$ denotes the closed bull in $L_{p,w}(X)$.

As a peer to best co approximation, and the kind of approximation called best co approximation which define by.

If $a^* \in A$, then

 $||f - a||_{p,w} \ge ||a^* - a||_{p,w}$ for $a \in A$.

We say that a^* is best co-approximation of f and the set of best co-approximation of f by the functions of δ is denoted by Q_{δ} . Clearly

 $\mathcal{Q}_{\delta}(f) = \left\{ \bigcap_{a \in A} \overline{B}(f, \|f - a\|_{p, w}) \right\} \cap A$

The set A is said to be proximal (respectively coproximal) if $\mathcal{P}_{\delta}(f)$ (respectively $\mathcal{Q}_{\delta}(f)$) is non-empty for each $f \in L_{p,w}(X)$, it's said to be chebyshev (respectively chebyshev) $\mathcal{P}_{\delta}(f)$ (respectively $\mathcal{Q}(f)$) contains exactly one element foe each $f \in L_{p,w}(X)$.

The function $f \in L_{p,w}(X)$ is said to be orthogonal to author function $g \in L_{p,w}(X)$ and denoted by $f \perp g$ if $||f - g||_{p,w} \le ||f - \beta g||_{p,w}$ for any scalar β and f is orthogonal to subspace A of $L_{p,w}(X)$ and denoted by $f \perp$ A if $f \perp a$ for

^{*}Corresponding author at: Department of Mathematics/ College of Education for pure science, University of Anbar, E-mail address: ala20u2014@uoanbar.edu.iq

2. Auxiliary Lemma:

Lemma 2.1: If A is subspace of $L_{p,w}(X)$. Then

 $A \subset Q_{\delta}(f)$ when even the diameter of A is smaller then dist $||f - A||_{p,w}$

 $\delta(A) < \|f - A\|_{p,w}$, where $\delta(A)$ is the diameter of A.

Lemma 2.2: if A is aconvex subset of strongly locally convex $L_{p,w}(X)$, then $Q_{\delta}(f)$ is a convex set.

Lemma 2.3: if A is a linear subspace of $L_{p,w}(X)$ and $Q_{\delta}(0) = \{ f \in L_{p,w}(X) : 0 \in Q_{\delta}(f) \}.$ Then

> $(Q_{\delta}(0))^{-1}$ is a closed set containing (i) 0. (ii) $a_0 \in Q_{\delta}(f) \Leftrightarrow 0 \in Q_{\delta}(f)$ a_0) i.e $f - a_0 \in (Q_{\delta}(0))^{-1}$. (iii) for $a \in A$ we have $h \in$ $(Q_{\delta}(a))^{-1} \Leftrightarrow a \in Q_{\delta}(a+h)$ i.e. a + $h \in (Q_{\delta}(a))^{-1}$.

Remark 2.4: If $L_{p,w}(X)$ is unbounded functions space and f_{\circ} fixed function in $L_{p,w}(X)$, then the space

$$\overline{L_{p,w}(X)} = \begin{cases} f: [-1,1] \to \mathbb{R}, \|f\|_{p,w} = \\ \sup_{\substack{x,y \in [-1,1]\\x \neq y}} \frac{|f(x) - f(y)|}{|x - y|} \end{cases}, \text{ is complete normed space} \end{cases}$$

3. Main Results

Theorem 3.1:

Let $f \in L_{p,w}(X)$, $1 \le p < \infty$ and A is linear subspace of unbounded functions space. Then $\mathcal{F}(f)$ is non-empty set for some $f \in$ $L_{p,w}(X)/A$ if and only if $(Q_{\delta}(f))^{-1}(0)$ is nonsingleton.

Proof:- By Lemma 2.3 (ii), then $0 \in$ $(Q_{\delta}(f))^{-1}(0).$

Now, suppose $g \in \mathcal{F}(f)$ for some $f \in L_{p,w}(X)/A$. Then By Lemma 2.3 (ii)

 $||f - g||_{p,w} \neq 0 \in (Q_{\delta}(f))^{-1}(0)$ and so, $(\mathcal{Q}_{\delta}(f)))^{-1}(0)$ is not a singleton.

Conversely: assume $(Q_{\delta}(f))^{-1}(0)$ is not a singleton. Then there exists an $(Q_{\delta}(f) \neq \emptyset) \in (Q_{\delta}(f))^{-1}(0)$ And so $0 \in Q_{\delta}(f)$ i.e. $Q_{\delta}(f) \neq \emptyset$ for some $f \in L_{p,w}(X)/A$.

Theorem 3.2:

Let $L_{p,w}(X)$ be the space of all monatons unbounded function , $1 \le p < \infty$, A is linear subspace of $L_{p,w}(X)$,

 $f \in L_{p,w}(X) / A$ and $\lambda \in A$. Then $\lambda \in \mathcal{F}(f)$, for each $\lambda \in A$, there is an $f_{\lambda} \in \overline{L_{p,w}(X)}$ with the following properties

(i)
$$|f_{\lambda}(f) - f_{\lambda}(\lambda)| \leq$$

 $||f - \lambda||_{p,w} \quad \forall f \in L_{p,w}(X) \& \lambda \in A$.
(ii) $f_{\lambda} (f - \lambda) = 0$.
(iii) $f_{\lambda} (\lambda_0 - \lambda) = ||\lambda_0 - \lambda||_{p,w}$.

Proof: Assume that for every $\lambda_0 \in A$, there exist $f_{\lambda} \in$ $\overline{L_{p,w}(X)}$, satisfies the above conditions (i) ,(ii) and (iii), then

 $||f - \lambda_{\circ}||_{n,w} \ge |f_{\lambda}(f) - f_{\lambda}(\lambda_{\circ})|$ by condition (i). Since, $|f_{\lambda}(f) - f_{\lambda}(\lambda_{\circ})| = |f_{\lambda}(f - \lambda + \lambda - \lambda_{\circ})| =$ $|f_{\lambda}(\lambda - \lambda_{\circ})|$ by condition (ii). $f_{\lambda}(\lambda - \lambda_{\circ}) = \|\lambda_0 - \lambda\|_{p,w}$ by condition (iii). Thus, $\|\lambda_0 - \lambda\|_{p,w} \le \|f - \lambda_\circ\|_{p,w}$ for every $\lambda_\circ \in A$. Hence, λ is co- approximation of , implies $\lambda \in Q_{\delta}(f)$.

Theorem 3.3:

Let *A* be a linear subspace of $L_{p,w}(X)$ with $Q_{\delta}(f) = \emptyset$, for every $f \in L_{p,w}(X)$, there exist no $\in L_{p,w}(X) \ni A \perp$ k.

Proof :- Suppose there exists some $\mathscr{K} \in L_{n,w}(X)$ such that $A \perp k$, i.e. $a \perp k$ for every $a \in A$. Then $||f - \beta k||_{p,w} \ge ||f - 0||_{p,w}$, for all $f \in L_{p,w}(X)$ and for all scalars β .

This gives

 $||f - 0||_{p,w} \le ||h - f||_{p,w}$ for all $f \in L_{p,w}(X)$ i.e $0 \in Q_{\delta}(f)$, thus $Q_{\delta}(k) \neq \emptyset$

for $h \in L_{p,w}(X)$, this contradiction with hypothesis.

Theorem 3.4:

Let M sub space of $L_{p,w}(X)$ and $f \in L_{p,w}(X)$ then :

(i)
$$B = \{g_0 \in M :$$

 $g_0 \cap_{g \in M} \mathcal{P}_{\delta}(f) \} \subset \mathcal{Q}_{\delta}(f), \text{ where}$

 $\|g_0 - f\|_{p,w} = \{\beta f + (1 - \beta)g_0; \beta \text{ scalar }\} \text{ is the}$

linear manifold spanned by g_0 and f.

(ii) For an element $g_0 \in M$ we have $g_0 \in \mathcal{Q}_{\delta}(f)$

if $A \subset \mathcal{P}_{\delta \parallel f - a_0 \parallel}(0) = \{ \hbar \in L_{p,w} : 0 \in \mathcal{P}_{\delta}(\hbar) \}$

Proof: (i) $a_0 \in A$ and $a_0 \in \mathcal{P}_{\delta}(a)$.

For all $a \in A \implies a_0 \in A$ and $||a_0 - a||_{p,w} \leq ||(\beta f + (1 - \beta) a_0) - a||_{p,w}$, for all $a \in A$ and all scalars β .

For all $a \in A$ and all scalars β

 $\implies a_0 \in A \text{ and } \|a_0 - a\|_{p,w} \le \|f - a\|_{p,w} \text{ for}$ all $g \in M$

i.e. $a_0 \in \mathcal{Q}_{\delta}(f)$ (ii) $A \subset \mathcal{P}_{\delta \parallel f - a_0 \parallel}^{-1}(0)$, so $0 \in \mathcal{P}_{\delta}(a)$ for all $a \in \mathcal{P}_{\delta}(a)$

А.

 $\Longrightarrow \|a_0-a\|_{p,w} \le \|\beta(f-a_0)-a\|_{p,w}\,, \ \text{ for \ all } a \in A.$

Let $a_1 \in A$. Put $a = a_1 - a_0$ and $\beta = 1$, we obtain

 $\begin{aligned} \|(a_1 - a_0) - 0\|_{p,w} &\leq \|(f - a_0) - (a_1 - a_0)\|_{p,w} \leq \|f - a_1\|_{p,w} \\ \text{So, } a_0 &\in \mathcal{Q}_{\delta}(f). \end{aligned}$

Theorem 3.5:

Let *A* be asb space of linear space $L_{p,w}(X)$. Then following statements: are equivalent.

(i) A is coproximal.

(ii)
$$L_{p,w}(X) = A + (Q_{\delta}(0))^{-1}$$

Proof: (i) \Rightarrow (ii) Let $f \in L_{p,w}(X)$ and A coproximal, there is $a_0 \in A$ such that $a_0 \in Q_{\delta}(f)$ from lemma 2.3 (ii)

 $\begin{aligned} f - a_0 &\in (\mathcal{Q}_{\delta}(0))^{-1} \\ \text{Since } a_0 &\in A \text{ and } f - a_0 \in \mathcal{Q}_{\delta}(0) \text{ implies } f = a_0 + \\ f - a_0 &\in A + (\mathcal{Q}_{\delta}(0))^{-1} \\ \text{Hence } f &\in A + (\mathcal{Q}_{\delta}(0))^{-1} \\ \text{i.e. we obtain, } L_{p,w}(X) &\subset A + (\mathcal{Q}_{\delta}(0))^{-1} , \text{ but } A + \\ (\mathcal{Q}_{\delta}(0))^{-1} &\subset L_{p,w}(X) \\ \text{Thus } L_{p,w}(X) &= A + (\mathcal{Q}_{\delta}(0))^{-1} \\ \text{Now we need to show that (ii)} \Longrightarrow (i) , \text{ let } f \in L_{p,w}(X) = \\ A + (\mathcal{Q}_{\delta}(0))^{-1} \\ \text{Then } f &= a_0 + a , a_0 \in A \text{ and } a \in (\mathcal{Q}_{\delta}(0))^{-1} \\ \text{So, } 0 \in \mathcal{Q}_{\delta}(a) = \mathcal{Q}_{\delta}(f - a_0) \\ \end{aligned}$

From lemma (ii), $a_0 \in Q_{\delta}(a)$. Hence *A* is coproximal

Theorem 3.6:

Let A be a subspace of linear space $L_{p,w}(X)$. Then following statements are equivalent:

(i) A is coproximal.

(ii) A is closed and for canonical mapping

$$M_A: L_{p,w}(X) \to L_{p,w}(X) / A$$
 such
that $M_A(Q_\delta(0))^{-1} = L_{p,w}(X) / A$.

Proof :-

(i) \Rightarrow (ii) Let A be acoproximinal sub space of $L_{p,w}(X)$ we need to prove A is closed and

 $M_A \left(\mathcal{Q}_{\delta}(0) \right)^{-1} = L_{nw}(X) / A$ Let $a \in \overline{A}$, $r_0 \in Q_{\delta}(a)$. Then there is a sequence $\{a_n\}$ in A such that $a_n \rightarrow a$ and $||a - r_0||_{p,w} \le ||a - k||_{p,w}$ for $k \in A$ Also $||a_n - r_0|| \le ||a_n - a||$ for all n. We obtain $a_n \rightarrow r_0$, but $a_n \rightarrow a$ Implies $r_0 = a \in A$ Thus $\overline{A} \subset A \subset \overline{A}$ implies $A = \overline{A}$ So, A is closed Now $a_0 \in Q_{\delta}(f)$ implies by lemma 2.3 (ii) $f - a_0 \in \mathcal{Q}_{\delta}(f)$, then $M_A(f - a_0) = (f - a_0) + A =$ f + A $(ii) \rightarrow (i)$ Let $f \in L_{p,w}(x)$ $f + A \in L_{p,w}(X)/A = M_A(Q_{\delta}(0))^{-1}$ $\Rightarrow f + A = M_A(h)$, where $h \in (Q_{\delta}(0))^{-1}$ $\Rightarrow f + A = h + A$, where $0 \in (Q_{\delta}(0))^{-1}$ $\implies f - h = a_0 \in A \text{ and } 0 \in \mathcal{Q}_{\delta}(f - a_0)$ from lemma 3.3 (ii) $\Rightarrow a_0 \in \mathcal{Q}_{\delta}(f)$ A is coproximinal.

Theorem 3.7:

Let A be closed sub space of the space $L_{p,w}(X)$. Then the following.

- (i) A is a co-Chebyshev subspace.
- (ii) $L_{p,w}(X) = A \oplus (Q_{\delta}(0))^{-1}$, where \oplus means that the sum

decomposition of each $f \in L_{p,w}(X)$ is a unique .

(iii) A is coproximal and
$$(\mathcal{Q}_{\delta}(0))^{-1} - (\mathcal{Q}_{\delta}(0))^{-1} \cap A = \{0\}.$$

(iv) A is coproximinal and the restriction mapping $M_A/(Q_{\delta}(0))^{-1}$ is injective.

Proof: (i) \rightarrow (ii) since A is co-Chebyshev it is coproximinal and by theorem 3.5

 $L_{p,w}(X) = A + (Q_{\delta}(0))^{-1}$, now we show that the sum decoposition of each $f \in L_{p,w}(X)$ is a unique suppose $f \in L_{n,w}(X)$ and

 $f = a_1 + h_1 \text{ and } f = a_2 + h_2$ Where $a_1, a_2 \in A$, $h_1, h_2 \in (\mathcal{Q}_{\delta}(0))^{-1}$ This gives $a_1 - a_2 = h - h_2$ Now $h_1 \in (\mathcal{Q}_{\delta}(0))^{-1}$ $\Rightarrow 0 \in \mathcal{Q}_{\delta}(h_1) \Rightarrow a_1 \in \mathcal{Q}_{\delta}(h_1 + a_1)$ by lemma 2.3 (ii).

i.e. $a_1 \in \mathcal{Q}_{\delta}(f)$ similarly $a_2 \in \mathcal{Q}_{\delta}(f)$

- since A is co- Chebyshev $a_1 = a_2$ and consequently $h_1 = h_2$
- Hence $L_{p,w}(X) = A \oplus (\mathcal{Q}_{\delta}(0))^{-1}$

(ii) \rightarrow (iii) $L_{p,w}(X) = A \oplus (\mathcal{Q}_{\delta}(0))^{-1} \Longrightarrow A$ coproximinal.

By Theorem 3.6 suppose $0 \neq h \in (\mathcal{Q}_{\delta}(0))^{-1} - (\mathcal{Q}_{\delta}(0))^{-1} \cap A$

Then $. \quad h = h_1 - h_2 , h_1 \in (Q_{\delta}(0))^{-1}, h_2 \in (Q_{\delta}(0))^{-1}$

 $(\mathcal{Q}_{\delta}(0))^{-1}$ $h_1 \neq h_2$ so, $0 \in \mathcal{Q}_{\delta}(h_1)$, $0 \in \mathcal{Q}_{\delta}(h_2)$, now $h_1, h_2 \in (\mathcal{Q}_{\delta}(0))^{-1}$, $h_1 - h_2 \in A|(0)$ and

 $h_1, h_2 \in (Q_{\delta}(0))^{-1}$, $h_1 - h_2 \in A|(0)$ and

 $h_1 = 0 + h_1 = (h_1 - h_2) + h_2$ a contradication to the uniqueness of the sum decomposition .

Hence
$$\left[\left(\mathcal{Q}_{\delta}(0)\right)^{-1} - \left(\mathcal{Q}_{\delta}(0)\right)^{-1} \cap A = \{0\}\right]$$
.
(iii) \rightarrow (iv) Suppose $M_A / \left(\mathcal{Q}_{\delta}(0)\right)^{-1}$ is not

injective, i.e there exists $h_1 - h_2 \in (Q_{\delta}(0))^{-1}$ $h_1 \neq h_2$ and $M_A(h_1) = M_A(h_2)$ Then $0 \neq h_1, h_2 \in (\mathcal{F}(0))^{-1} - (\mathcal{F}(0))^{-1} \cap A$ a contradiction.

(iv) \rightarrow (i) Suppose $f \in L_{p,w}(X)$ has two distinct best coaproximation in A say a_1 and a_2 then by observation 2.3 (ii) $f - a_1$ and $f - a_2 \in (Q_{\delta}(0))^{-1}$, $f - a_1 \neq f - a_2$. But $M_A f - (a_1) = M_A f - (a_2)$ QS $(f - a_1) - f - a_2) = a_2 - a_1 \in A$, which is a contradiction.

Theorem 3.8:

for a closed linear subspace A of $L_{p,w}(X)$ the following statement are equivalent :-

(i) A is co-semi chebysher sub space.

(ii) Each element $f \in L_{p,w}(X)$ has at most one some decomposition as $A + (F(0))^{-1}$

(iii)
$$\left[\left(\mathcal{F}(0) \right)^{-1} - \left(\mathcal{F}(0) \right)^{-1} \right] \cap A =$$

 $M_A | (\mathcal{F}(0))^{-1}$ is injective.

=References

- **1.** H. berens and U. westphal, (1980), on the best coapproximation in Hilbert space, Devore and K. Scherer, Eds, Academic press, New york, 7-10.
- **2.** T. D. Narang, (1986), On best coapproximation, Ranchi Univ. Math. J., p.p. 49-56.
- T. D. Narang, (1991), On best coapproximation in normed linear spaces, Rocky Mountain J. Math., 22, 265-287.
- **4.** T. D. Narang and S. P. Singh, (1997), Best coapproximation in locally convex spaces, Tamkang J. Math 28, p.p.1-5.
- **5.** G. S. Rao and R. Sara Ranan, (2003), strongly unique best co-approximation, Kyungpook Mathematical J., Vol. 43, p.p.519-538.
- 6. S. mod ares and M. debghami, (2011), Best simultance, best co-approximation in normed linear spaces, proceeding of the 42nd Annual Iranian Mathematics Conference Vali-Asr university, Rafsanhan, Iran 5-8 September, p.p. 413-416.
- T. D. Narang and S. Gupta, (2015), Proximinality and co-approximinality in metric linear spaces, Ann. Univ. Mariae Curie-Sklodowska Seet. A, 69(1), (2015), p.p. 83-90.
- **8.** T. D. Narang and S. Gupta, (2016), on Best approximation and best co-approximation, Thai. J. Math., 14 ,p.p. 505-516.

P-ISSN 1991-8941E-ISSN 2706-6703 2022,16,(02): **79 - 83**

- **9.** P. Bandyopadhyay, Y. Li and D. Narayana, (2008), Proximinality in Banach spaces, J. Math. Anal. Apple. 341, p.p. 309-317.
- Z. H. Zhang, C. Y. Liu and Z. Zhaou, (2015), Some examples concerning proximinality in Banach Space, J. Approx. Theory, 200, p.p.136-143.
- J. Kavikumar, N. S. Manian, M.B.K. Moorthy, (2014), Best Co-approximation and Best Simultaneous Co-approximation in Fuzzy Normed

Spaces, World Academy Scince, Mathematical and Computational Scienes, Vol. 8, no. 1, p.p. 211-217.

12. J. Kavikumar, N. S. Manian, M.B.K. Moorthy, (2014), Best Co-approximation in Fuzzy Anti-nnormed Spaces, World Academy Scince, Engineering and Technology, International of Mathematical and Computational Sciences, Vol. 8, no 4, p.p.162-165.

أفضل تقريب مصاحب في الفضاء الموزون

علاء عدنان عواد¹ علاء حسين²

¹قسم الرياضيات، كلية التربية للعلوم الصرفة ، جامعة الانبار ، رمادي ، العراق ² قسم الرياضيات، كلية التربية للعلوم الصرفة ، جامعة الانبار ، رمادي ، العراق

الخلاصة:

في هذا البحث تم عرض أفضل تقريب مصاحب في الفضاء الموزون والنتائج التي الحصول عليها هي وجودية الدوال لافضل تقريب مصاحب و وحدانية وتعددية هذه الدوال في فضاءات شبيشيف المصاحبة الجزئية.