Document Type : Review Paper

Authors

1 Department of Biology ,College of Science ,University Of Anbar , Al- Anbar , Iraq ;

2 Department of Biology ,College of Science ,University Of Anbar , Al-Anbar , Iraq ;

Abstract

Treating fungus-related plant diseases, biological control is an efficient and environmental friendly. It could be a substitute for addition to conventional pesticides, Plant diseases drastically reduced productivity and quality of agricultural yields by severely damaging or destroying crops all over the world. In this review, the antagonistic activity of bacterial and fungal biocontrol agents was discussed.The various fungal genera and bacteria have several use in both the natural and commercial worlds. In addition to their significant roles in the ecosystem, the antagonistic features of the fungal and bacterial species have been exploited as biological control agents (BCA) in the treatment of plant diseases. The ability of fungal biological control agents (FBCAs) to prevent disease is comparable to the use of synthetic chemicals, it is necessary to consider the availability of synthetic pesticides that are secured, environmentally friendly, and financially viable. It is thought that using microorganisms for biological management of pests is a practical strategy that can significantly reduce the negative effects of agrochemicals in soil. This study covers fungi and bacteria genera as BCA and calls for modifications to research and development to improve PDM. For increasing crop yield in sustainable agriculture.

Keywords

Main Subjects

[1]  O’Brien, P. A. (2017). Biological control of plant diseases. Australas. Plant Pathol.46 (4), 293–304. doi: 10.1007/s13313-017-0481-4.
[2]  Menzler-Hokkanen, I. (2006). “Socioeconomic significance of biological control,” in An ecological and societal approach to biological control (Dordrecht: Springer), 13–25.
[3] James, T., et al. (2006). Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443, 818-822.
[4] Staples, R.C. (2000). Research on the rust fungi during the twentieth century. Annu. Rev. Phytopathol. 38, 4969.
[5] Pal, K. K. and B. McSpadden Gardener. (2006). Biological Control of Plant Pathogens. The Plant Health Instructor DOI: 10.1094/PHI-A-2006-1117-02.
[6] Agrios, George. N. (2005). Plant pathology. Fifth edition , printed in united state of America. Pp : 12-15.
[7] Desjardins, A.E., Hohn, T.M., McCormick, S.P. (1993). Trichothecene biosynthesis in Fusarium species: chemistry, genetics and significance. Microbiol. Rev. 57, 595604.
[8] Brown, J.K.M., (1994). Chance and selection in the evolution of barley mildew. Trends Microbiol. 2, 461501.
[9] Dean  R. , Jan A. L. Vankan , Zacharias, A. Pretorius  , E. Hammond, K. , Antonio, P. , Pietro, D. SPANU, Jason, J. , Marty, D. , Regine, K. , JEFF,E.  and Garyd, F. (2012). The Top 10 fungal pathogens in molecular plant pathology. molecular plant pathology  13(4). Pp 414- 430.
[10] Lazarovits G., Turnbull A., Johnston-Monje D.(2014). Plant health management: biological control of plant pathogens. In: Van Alfen NK, editor. Encyclopedia of agriculture and food systems. New York, NY: Academic Press;   p. 388–399.
[11] Kour, D.; Rana, K.L.; Yadav, A.N.; Yadav, N.; Kumar, M.; Kumar, V.; Vyas, P.; Dhaliwal, H.S.; Saxena, A.K.(2019). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal. Agric. Biotechnol.,23, 101487.
[12] Glick, B.R.(2012). Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica , 963401.
[13] Mohammed, B.L.; Hussein, R.A.; Toama, F.N.(2019). Biological control of Fusarium wilt in tomato by endophytic rhizobactria. Energy Procedia , 157, 171–179.
 [14] Tariq, M. ; Khan, A.; Asif, M.; Khan, F.; Ansari, T.;  Shariq  ,M.; and  Siddiqui,M.(2020). Biological control: a sustainable and practical approach for plant disease management. ACTA Agriculture Scandinavica, Section B — Soil & Plant Science  , vol. 70, No. 6, 507–524; https://doi.org/10.1080/09064710.2020.1784262
[15] Blaszcyk, L.; Siwulski, M.; Sobieralski, K.; Lisiecka, J.; Jedryczka, M.(2014). Trichoderma spp. - application and prospects for use in organic farming and industry. Journal of Plant Protection Research  ;54(4):309–317
[16] Schuster A., Schmoll M.( 2010). Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 87 (3): 789−799.
[17] Harman, G.E. (2006) "Overview of mechanisms and uses of Trichoderma spp."
Phytopathology 96 (2): 190.
[18] Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. and Lorito, M. (2004). Trichoderma species - Opportunistic, Avirulent Plant Symbionts. Nature Reveiws, 2: 43-56.
[19] Bigirimana, J., De Meyer, G., Poppe, J., Elad, Y. and Hofte, M. (1997). Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Med Fac Landbouww University Gent, 62: 1001–1007.
[20] Yedidia, I., Benhamou, N. and Chet, I. (1999). Induction of defence responses in Cucumber plants (Cucumis sativus L.) by the Biocontrol agent Trichoderma harzianum. Applied Environmental and Microbiology, 65: 1061- 1071.
[21] Mohiddin, F.A., Khan, M.R., Khan, S.M. and Bhat, B.H. (2010). Why Trichoderma is Considered Super Hero (Super Fungus) Against the Evil Parasites? Plant Pathology Journal, 9(3): 92-102.
[22]  Puyam, A., Shahid, M., Srivastava, M. and Singh, A. (2013). Effect of different physiological parameters on growth and sporulation of Trichoderma viride. Plant Disease Research, 28(2) :146-151.
[23] Boughalleb-M’Hamdi, N.; Salem, I.B.; M’Hamdi, M.(2018). Evaluation of the Efficiency of Trichoderma, Penicillium, and Aspergillus Species as Biological Control Agents against Four Soil-Borne Fungi of  Melon and Watermelon. Egypt. J. Biol. Pest Control, 28, 25.
 [24] Jin, N.; Liu, S.M.; Peng, H.; Huang, W.K.; Kong, L.A.; Wu, Y.H.; Chen, Y.P.; Ge, F.Y.; Jian, H.; Peng, D.L.(2019). Isolation and Characterization of Aspergillus Niger NBC001 Underlying Suppression against Heterodera Glycines. Sci. Rep., 9, 591.
 [25] Idan, A.A.; Sijam, K.; Kadir, J.; Rashid, T.S.; Awla, H.K.; Alsultan,W.(2017). Biological Control of Pyricularia Oryzae Using Antifungal Compounds Produced by Aspergillus Niger. Am. J. Plant Sci.  , 08, 2445–2460.
 [26] Hu, X.;Webster, G.; Xie, L.; Yu, C.; Li, Y.; Liao, X.(2013). A New Mycoparasite, Aspergillus sp. ASP-4, Parasitizes the Sclerotia of Sclerotinia
Sclerotiorum. Crop. Prot., 54, 15–22.
[27] Cray, J.A.; Bell, A.N.W.; Bhaganna, P.; Mswaka, A.Y.; Timson, D.J.; Hallsworth, J.E.(2013) The Biology of Habitat Dominance; Can Microbes Behave asWeeds? Microb. Biotechnol., 6, 453–492.
 [28] Šimonoviˇcová, A.; Vojtková, H.; Nosalj, S.; Piecková, E.; Švehláková, H.; Kraková, L.; Drahovská, H.; Stalmachová, B.; Kuˇcová, K.; Pangallo, D.(2021). Aspergillus Niger Environmental Isolates and Their Specific Diversity Through Metabolite Profiling. Front. Microbiol., 12, 658010.
 [29] Nadumane, V.K.; Venkatachalam, P.; Gajaraj, B.(2016).Aspergillus Applications in Cancer Research. In New and Future Developments in Microbial Biotechnology and Bioengineering; Gupta, V.K., Ed.; Elsevier: Amsterdam, The Netherlands; pp. 243–255, ISBN 978-0-444-63505-1.
[30] Hamayun, M.; Hussain, A.; Iqbal, A.; Khan, S.A.; Lee, I.(2018). Endophytic Fungus Aspergillus Japonicus Mediates Host Plant Growth under Normal and Heat Stress Conditions. Biomed Res. Int., 3, 7696831.
 [31] Gulzar, T.; Huma, T.; Jalal, F.; Iqbal, S.; Abrar, S.; Kiran, S.; Nosheen, S.; Hussain,W.; Rafique, M.A.(2017). Bioremediation of Synthetic and Industrial Effluents by Aspergillus Niger Isolated from Contaminated Soil Following a Sequential Strategy. Molecules, 22, 2244.
 [32] Yang, L.; Lübeck, M.; Lübeck, P.S.(2017). Aspergillus as a Versatile Cell Factory for Organic Acid Production. Fungal. Biol. Rev., 31, 33–49.
 [33] Sadorn K., Saepua S., Boonyuen N., Laksanacharoen P., Rachtawee P., Prabpai S., et al.. (2016). Allahabadolactones A and B from the endophytic fungus, Aspergillus allahabadii BCC45335. Tetrahedron 72, 489–495. doi: 10.1016/j.tet.2015.11.056.
[34] El-hawary S. S., Moawad A. S., Bahr H. S., Abdelmohsen U. R., Mohammed R. (2020). Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv. 10, 22058–22079. doi: 10.1039/D0RA04290K.
[35] Wang W., Liao Y., Tang C., Huang X., Luo Z., Chen J., et al.. (2017). Cytotoxic and antibacterial compounds from the coral-derived fungus Aspergillus tritici SP2-8-1. Mar. Drugs 15, 348. doi: 10.3390/md15110348, PMID.
[36] Mohamed G. A., Ibrahim S. R., Asfour H. Z. (2020). Antimicrobial metabolites from the endophytic fungus Aspergillus versicolorPhytochem. Lett. 35, 152–155. doi: 10.1016/j.phytol.2019.12.003.
[37] El-Sayed A. S., Ali G. S. (2020). Aspergillus flavipes is a novel efficient biocontrol agent of Phytophthora parasiticaBiol. Control 140:104072. doi: 10.1016/j.biocontrol.2019.104072.
[38a] Ali, I., Akbar, A., Anwar, M., Yanwisetpakdee, B., Prasongsuk, S., Lotrakul, P. and Punnapayak, H., (2014a). Purification and characterization of extracellular, polyextremophilic a- amylase obtained from halophilic Engyodontium album. Iranian J. Biotech., 12: 35-40.
[38b] Ali, I., Siwarungson, N., Punnapayak, H., Lotrakul, P., Prasongsuk, S., Bankeeree, W. and Sudip, K., Rakshit.,( 2014b). Screening Of Potential Biotechnological Applications From Obligate Halophilic Fungi, Isolated From A Man-Made Solar Saltern Located In Phetchaburi Province, Thailand. Pak. J. Bot., 46(3): 983-988.
[39] Belancic, A., Scarpa, J., Peirano, A., Díaz, R., Steiner, J. and Eyzaguirre, J.(1995). Penicillium purpurogenum produces several xylanases: Purification and properties of two of the enzymes. Elsevier, Journal of Biotechnology. Doi: 10.1016/0168-1656(95)00057- W.
[40]  Refai M ,  Abo El-Yazid H. and  Tawakkol W. ( 2015). Monograph On The genus Penicillium. Pp. 4 – 158.
[41] Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M. (2007). The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant and Cell Physiology 48, 1724-1736.
[42] Yang L, Xie J, Jiang D, Fu Y, Li G, Lin F. (2008) . Antifungal substances produced by Penicillium oxalicum strain PY-1—potential antibiotics against plant pathogenic fungi. World Journal of Microbiology and Biotechnology 24, 909-915.
[43] Sempere F, Santamarina MP .(2008). Suppression of Nigrospora oryzae (Berk. & Broome) Petch by an aggressive mycoparasite and competitor, Penicillium oxalicum Currie & Thom. International Journal of Food Microbiology 122, 35-43.
[44] Legein, M.; Smets, W.; Vandenheuvel, D.; Eilers, T.; Muyshondt, B.; Prinsen, E.; Samson, R.; Lebeer, S.(2020). Modes of action of microbial biocontrol in the phyllosphere. Front. Microbiol., 11, 1619.
[45] Kalia, V.C.; Patel, S.K.S.; Kang, Y.C.; Lee, J.K.(2019). Quorum sensing inhibitors as antipathogens: Biotechnological applications. Biotechnol. Adv, 37, 68–90.
[46] Elnahal, A.S.M.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A.(2022). The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur. J. Plant Pathol., 162, 759–792.
[47] Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M.(2012). The rhizosphere microbiome and plant health. Trends Plant Sci., 17, 478–486.
[48] Oso, S.; Walters, M.; Schlechter, R.O.; Remus-Emsermann, M.N.P.(2019). Utilisation of hydrocarbons and production of surfactants by bacteria isolated from plant leaf surfaces. FEMS Microbiol. Lett., 366, fnz061.
[49] Pliego, C.; de Weert, S.; Lamers, G.; de Vicente, A.; Bloemberg, G.V.; Cazorla, F.M.; Ramos, C. (2008).Two similar enhanced root colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae. Environ. Microbiol., 10, 3295–3304.
[50] Ellis, R.J.; Timms-Wilson, T.M.; Beringer, J.E.; Rhodes, D.; Renwick, A.; Stevenson, L.; Bailey, M.J.(1999). Ecological basis for biocontrol of damping-off disease by Pseudomonas fluorescens 54/96. J. Appl. Microbiol., 87, 454–463.
[51] Duijff, B.J.; Bakker, P.A.H.M.; Schippers, B.(1994). Suppression of fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol. Sci. Technol., 4, 279–288.
[52]  Haas, D.; Keel, C.(2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol., 41, 117–153.
[53] Agustí, L.; Bonaterra, A.; Moragrega, C.; Camps, J.; Montesinos, E.(2011). Biocontrol of root rot of strawberry caused by Phytophthora cactorum with a combination of two Pseudomonas fluorescens strains. J. Plant Pathol. , 93, 363–372.
[54] Sindhu, S.S.; Dadarwal, K.R.(2001). Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol. Res., 156, 353–358.
[55] McSpadden Gardener, B.B.(2004). Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology, 94, 1252–1258.
[56] Abriouel, H.; Franz, C.M.A.P.; Omar, N.B.; Gálvez, A.(2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev., 35, 201–232.
[57] Ugras, S.; Sezen, K.; Kati, H.; Demirbag, Z.(2013). Purification and characterization of the bacteriocin Thuricin Bn1 produced by Bacillus thuringiensis subsp. kurstaki Bn1 isolated from a hazelnut pest. J. Microbiol. Biotechnol., 23, 167–176.
[58] Mouloud, G.; Daoud, H.; Bassem, J.; Laribi Atef, I.; Hani, B.(2013). New bacteriocin from Bacillus clausii strainGM17: Purification, characterization, and biological activity. Appl. Biochem. Biotechnol., 171, 2186–2200.
[59] Raaijmakers, J.M.; De Bruijn, I.; Nybroe, O.; Ongena, M.(2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiol. Rev., 34, 1037–1062.
[60] Zeriouh, H.; Romero, D.; Garcia-Gutierrez, L.; Cazorla, F.M.; de Vicente, A.; Perez-Garcia, A.(2011). The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol. Plant Microbe Interact., 24, 1540–1552.
[61] Mora, I.; Cabrefiga, J.; Montesinos, E.(2015). Cyclic lipopeptide biosynthetic genes and products, and inhibitory activity of plantassociated Bacillus against phytopathogenic bacteria. PLoS ONE, 10, e0127738.
[62] Preecha, C.; Sadowsky, M.J.; Prathuangwong, S.(2010). Lipopeptide surfactin produced by Bacillus amyloliquefaciens KPS46 is required for biocontrol efficacy against Xanthomonas axonopodis pv. glycines. Kasetsart J. Nat. Sci., 44, 84–99.
[63] Ongena, M.; Duby, F.; Jourdan, E.; Beaudry, T.; Jadin, V.; Dommes, J.; Thonart, P.(2005). Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl. Microbiol. Biot.,67, 692–698.
[64] Jiang, C.-H.; Liao, M.-J.; Wang, H.-K.; Zheng, M.-Z.; Xu, J.-J.; Guo, J.-H.(2018). Bacillus velezensis a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol. Control, 126, 147–157.
[65] Guleria, S.; Walia, A.; Chauhan, A.; Shirkot, C.K.(2016). Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum. Int. J. Food Microbiol., 232, 134–143.
[66] Viaene, T.; Langendries, S.; Beirinckx, S.; Maes, M.; Goormachtig, S.(2016). Streptomyces as a plant’s best friend? FEMS Microbiol. Ecol., 92, fiw119.
[67] Díaz-Díaz, M.; Bernal-Cabrera, A.; Trapero, A.; Medina-Marrero, R.; Sifontes-Rodríguez, S.; Cupull-Santana, R.D.; García-Bernal, M.; Agustí-Brisach, C.(2022). Characterization of actinobacterial strains as potential biocontrol agents against Macrophomina phaseolinaand Rhizoctonia solani, the main soil-borne pathogens of Phaseolus vulgaris in Cuba. Plants, 11, 645.
[68] Álvarez-Pérez, J.M.; González-García, S.; Cobos, R.; Olego, M.Á.; Ibañez, A.; Díez-Galán, A.; Garzón-Jimeno, E.; Coque, J.J.R.(2017). Use of endophytic and rhizosphere actinobacteria from grapevine plants to reduce nursery fungal graft infections that lead to young grapevine decline. Appl. Environ. Microbiol., 83, e01564-17.
[69] Walterson, A.M.; Stavrinides, J.(2015). Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev., 39, 968–984.
[70] Smits, T.H.M.; Rezzonico, F.; Pelludat, C.; Goesmann, A.; Frey, J.E.; Duffy, B.(2010).Genomic and phenotypic characterization of a non-pigmented variant of Pantoea vagans biocontrol strain C9-1 lacking the 530 kb megaplasmid pPag3. FEMS Microbiol. Lett., 308, 48–54.
[71] Trias, R.; Badosa, E.; Montesinos, E.; Bañeras, L. (2008). Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. Int. J. Food Microbiol., 127, 91–98.
[72] Trias, R.; Bañeras, L.; Badosa, E.; Montesinos, E.(2008). Bioprotection of Golden Delicious apples and Iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. Int. J. Food Microbiol., 123, 50–60.