Document Type : Review Paper


1 University of Mosul, College of Science, Department of biology

2 2College of Pharmacy, University of Ninevah, Mosul, Iraq;

3 Department of Biology, College of Science, University of Mosul, Mosul, Iraq;


As the number of population around the world increases, the search for new energy sources has become a necessity. Much research has been conducted on renewable energy sources that may substitute traditional energy sources, these include solar energy, wind energy, and wave power. Microbes play an important role in producing energy by generating electrical conductivity through transporting electrons generated from their metabolism. Such bacteria are known as Electro-active bacteria and are used in microbial fuel cells where microbes are used to generate electric energy from the degradation of organic compounds. The role of microbial fuel cells are not only important in generating electricity, but also in reducing organic contaminants from the environment. Microbial fuel cells are also important in producing electricity in locations where it is costly to maintain batteries periodically such as the bottom of the oceans. One of the best-known electro-active bacteria is Geobacter, which has the ability to transfer electrons outside its membrane. Researchers have developed a genetic system that functions in Geobacter in order to construct mutants and study gene knockout strains and they found that this bacterium uses multiple c-type cytochromes to iron oxides by direct contact. In the past few decades, Shewanella has gained the attention of scientists due to its respiratory adaptability. This bacterium can respire different inorganic compounds as electron acceptors, including, thiosulfate, nitrate, arsenate, elemental sulfur, and fumarate. This ability came from its unique electron-transport pathways which helped to adapt changes in electron acceptor availability which fluctuate according to environmental conditions.


Main Subjects

 [1] Faisal, R. M., & Alsaffar, R. S. (2023). Bioplastic Degradation, Production and Genetic Improvements of Bioplastic Producing Strains: A review. Rafidain Journal of Science, 32(2), 69-74.
[2] Hao, S., Kuah, A. T. H., Rudd, C. D., Wong, K. H., Lai, N. Y. G., Mao, J., & Liu, X. (2020). A circular economy approach to green energy: Wind turbine, waste, and material recovery. Sci Total Environ, 702, 135054. doi:10.1016/j.scitotenv.2019.135054.
[3] Zhang, Z., & Lis, M. (2020). Modeling Green Energy Development Based on Sustainable Economic Growth in China. Sustainability, 12(4). doi:10.3390/su12041368.
[4] Faisal, R. M., & Al-Shiti, A. Y. (2023). Characterization of a novel pathway for xanthene degradation by the engineered strain Sphingobium yanoikuyae B1DR. Baghdad Science Journal, 20(2), 0409-0409.
[5] Sydow, A., Krieg, T., Mayer, F., Schrader, J., & Holtmann, D. (2014). Electroactive bacteria--molecular mechanisms and genetic tools. Appl Microbiol Biotechnol, 98(20), 8481-8495. doi:10.1007/s00253-014-6005-z.
[6] Folgosa, F., Tavares, P., & Pereira, A. S. (2015). Iron management and production of electricity by microorganisms. Appl Microbiol Biotechnol, 99(20), 8329-8336. doi:10.1007/s00253-015-6897-2.
[7] Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds.
[8] Lal, D. (2013). Microbes to generate electricity. Indian J Microbiol, 53(1), 120-122. doi:10.1007/s12088-012-0343-2.
[9] Faisal, R. M. (2019). Understanding the role of Dibenzofuran 4, 4a dioxygenase reveals a silent pathway for biphenyl degradation in Sphingomonas wittichii RW1 and helps in engineering dioxin degrading strains (Doctoral dissertation, Rutgers University-School of Graduate Studies).
[10] Ucar, D., Zhang, Y., & Angelidaki, I. (2017). An Overview of Electron Acceptors in Microbial Fuel Cells. Front Microbiol, 8, 643. doi:10.3389/fmicb.2017.00643
[11] Lovley, D. R. (2006). Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol, 17(3), 327-332. doi:10.1016/j.copbio.2006.04.006
[12] Tharali, A. D., Sain, N., & Osborne, W. J. (2016). Microbial fuel cells in bioelectricity production. Frontiers in Life Science, 9(4), 252-266.
[13] Zhao, G., Tian, Y., Yu, H., Li, J., Mao, D., Faisal, R. M., & Huang, X. (2022). Development of solid agents of the diphenyl ether herbicide degrading bacterium Bacillus sp. Za based on a mixed organic fertilizer carrier. Frontiers in Microbiology13, 1075930.
[14] Bond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol, 69(3), 1548-1555. doi:10.1128/AEM.69.3.1548-1555.2003.
[15] Emde, R., Swain, A., & Schink, B. (1989). Anaerobic oxidation of glycerol by Escherichia coli in an amperometric poised-potential culture system. Applied microbiology and biotechnology, 32(2), 170-175.
[16] Caccavo, F., Jr., Lonergan, D. J., Lovley, D. R., Davis, M., Stolz, J. F., & McInerney, M. J. (1994). Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol, 60(10), 3752-3759. doi:10.1128/aem.60.10.3752-3759.1994.
[17] Coppi, M. V., Leang, C., Sandler, S. J., & Lovley, D. R. (2001). Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol, 67(7), 3180-3187. doi:10.1128/AEM.67.7.3180-3187.2001.
[18] Leang, C., Adams, L. A., Chin, K. J., Nevin, K. P., Methe, B. A., Webster, J., . . . Lovley, D. R. (2005). Adaptation to disruption of the electron transfer pathway for Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol, 187(17), 5918-5926. doi:10.1128/JB.187.17.5918-5926.2005.
[19] Holmes, D. E., Chaudhuri, S. K., Nevin, K. P., Mehta, T., Methe, B. A., Liu, A., . . . Lovley, D. R. (2006). Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ Microbiol, 8(10), 1805-1815. doi:10.1111/j.1462-2920.2006.01065.x.
[20] Mehta, T., Coppi, M. V., Childers, S. E., & Lovley, D. R. (2005). Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol, 71(12), 8634-8641.
[21] Kim, B. C., Postier, B. L., Didonato, R. J., Chaudhuri, S. K., Nevin, K. P., & Lovley, D. R. (2008). Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. Bioelectrochemistry, 73(1), 70-75. doi:10.1016/j.bioelechem.2008.04.023
[22] Derby HA, Hammer BW. Bacteriology of Butter: IV. Bacteriological Studies on Surface Taint Butter, Iowa Agriculture and Home Economics Experiment Station Research Bulletin 1931, 11, 145.
[23] Nealson, K. H., & Scott, J. (2006). Ecophysiology of the genus Shewanella. The prokaryotes, 6, 1133-1151.
[24] Hau, H. H., & Gralnick, J. A. (2007). Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol., 61, 237-258.
[25] Fredrickson, J.K., Romine, M.F., Beliaev, A.S., Auchtung, J.M., Driscoll, M.E., Gardner, T.S. et al. (2008) Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6, 592–603.
[26] Ikeda, S., Takamatsu, Y., Tsuchiya, M., Suga, K., Tanaka, Y., Kouzuma, A., & Watanabe, K. (2021). Shewanella oneidensis MR-1 as a bacterial platform for electro-biotechnology. Essays in Biochemistry, 65(2), 355-364.
[27] Kouzuma, A., Kasai, T., Hirose, A., & Watanabe, K. (2015). Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells. Frontiers in microbiology, 6, 609.
[28] Yang, E., Mohamed, H. O., Park, S. G., Obaid, M., Al-Qaradawi, S. Y., Castaño, P., ... & Chae, K. J. (2021). A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies. Bioresource technology, 320, 124363.
[29] Shi, L., Squier, T.C., Zachara, J. M., and Fredrickson, J. K.(2007). Respiration of metal (hydr) oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol. Microbiol. 65, 12–20.
[30] Fonseca, B. M., Paquete, C. M., Neto, S. E., Pacheco, I., Soares, C. M., & Louro, R. O. (2013). Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1. Biochemical Journal, 449(1), 101-108.
[31] Sturm, G., Richter, K., Doetsch, A., Heide, H., Louro, R. O., & Gescher, J. (2015). A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. The ISME journal, 9(8), 1802-1811.
[32] Schuetz, B., Schicklberger, M., Kuermann, J., Spormann, A. M., & Gescher, J. (2009). Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Applied and environmental microbiology, 75(24), 7789-7796.
[33] Hartshorne, R. S., Reardon, C. L., Ross, D., Nuester, J., Clarke, T. A., Gates, A. J., ... & Richardson, D. J. (2009). Characterization of an electron conduit between bacteria and the extracellular environment. Proceedings of the National Academy of Sciences, 106(52), 22169-22174.
[34] Ross, D. E., Ruebush, S. S., Brantley, S. L., Hartshorne, R. S., Clarke, T. A., Richardson, D. J., & Tien, M. (2007). Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 73(18), 5797-5808.
[35] Beliaev, A. S., Saffarini, D. A., McLaughlin, J. L., & Hunnicutt, D. (2001). MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR‐1. Molecular microbiology, 39(3), 722-730.
[36] Newton, G. J., Mori, S., Nakamura, R., Hashimoto, K., & Watanabe, K. (2009). Analyses of current-generation mechanisms of Shewanella loihica PV-4 in microbial fuel cells in comparison with Shewanella oneidensis MR-1. Applied and Environmental Microbiology.
[37] Bretschger, O., Obraztsova, A., & Sturm, C. A. (2007). In SC; Gorby YA; Reed SB; Culley DE; Reardon CL; Barua S.; Romine MF; et al. Current Production and Metal Oxide Reduction by Shewanella Oneidensis MR-1 Wild Type and Mutants. Appl. Environ. Microbiol, 73(21), 7003-7012.
[38] Leung, D. H. L., Lim, Y. S., Uma, K., Pan, G. T., Lin, J. H., Chong, S., & Yang, T. C. K. (2021). Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell—a Mini Review. Applied biochemistry and biotechnology, 193(4), 1170-1186.
[39] Lower, B. H., Shi, L., Yongsunthon, R., Droubay, T. C., McCready, D. E., & Lower, S. K. (2007). Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. Journal of bacteriology, 189(13), 4944-4952.
[40] Mitchell, A. C., PETERSON, L., Reardon, C. L., Reed, S. B., Culley, D. E., Romine, M. R., & Geesey, G. G. (2012). Role of outer membrane c‐type cytochromes MtrC and OmcA in Shewanella oneidensis MR‐1 cell production, accumulation, and detachment during respiration on hematite. Geobiology, 10(4), 355-370.
[41] Baron, D., LaBelle, E., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2009). Electrochemical   measurement of electron transfer kinetics by Shewanella oneidensis MR-1. Journal of Biological Chemistry, 284(42), 28865-28873.
[42] Lies, D. P., Hernandez, M. E., Kappler, A., Mielke, R. E., Gralnick, J. A., & Newman, D. K. (2005). Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Applied and environmental microbiology, 71(8), 4414-4426.
[43] Coursolle, D., Baron, D. B., Bond, D. R., & Gralnick, J. A. (2010). The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. Journal of bacteriology, 192(2), 467-474.
[44] Oram, J., & Jeuken, L. J. (2019). Tactic response of Shewanella oneidensis MR-1 toward insoluble electron acceptors. MBio, 10(1), e02490-18.
[45] Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences, 105(10), 3968-3973.
[46] Kasai, T., Kouzuma, A., Nojiri, H., & Watanabe, K. (2015). Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1. BMC microbiology, 15(1), 1-12.
[47] Cheng, Z. H., Xiong, J. R., Min, D., Cheng, L., Liu, D. F., Li, W. W., ... & Yu, H. Q. (2020). Promoting bidirectional extracellular electron transfer of Shewanella oneidensis MR‐1 for hexavalent chromium reduction via elevating intracellular cAMP level. Biotechnology and Bioengineering, 117(5), 1294-1303.
[48] Hollands, K., Busby, S. J., & Lloyd, G. S. (2007). New targets for the cyclic AMP receptor protein in the Escherichia coli K-12 genome. FEMS microbiology letters, 274(1), 89-94.
[49] Murphy, J. N., Durbin, K. J., & Saltikov, C. W. (2009). Functional roles of arcA, etrA, cyclic AMP (cAMP)-cAMP receptor protein, and cya in the arsenate respiration pathway in Shewanella sp. strain ANA-3. Journal of bacteriology, 191(3), 1035-1043.
[50] Bekker, M., Alexeeva, S., Laan, W., Sawers, G., Teixeira de Mattos, J., & Hellingwerf, K. (2010). The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool. Journal of bacteriology, 192(3), 746-754.
[51] Lassak, J., Bubendorfer, S., & Thormann, K. M. (2013). Domain analysis of ArcS, the hybrid sensor kinase of the Shewanella oneidensis MR-1 Arc two-component system, reveals functional differentiation of its two receiver domains. Journal of bacteriology, 195(3), 482-492.
[52] Gao, H., Wang, X., Yang, Z. K., Palzkill, T., & Zhou, J. (2008). Probing regulon of ArcA in Shewanella oneidensis MR-1 by integrated genomic analyses. BMC Genomics, 9(1), 1-17.
[53] Wan, X. F., VerBerkmoes, N. C., McCue, L. A., Stanek, D., Connelly, H., Hauser, L. J., ... & Thompson, D. K. (2004). Transcriptomic and proteomic characterization of the Fur modulon in the metal-reducing bacterium Shewanella oneidensis. Journal of bacteriology, 186(24), 8385-8400.
[54] Yang, Y., Harris, D. P., Luo, F., Xiong, W., Joachimiak, M., Wu, L., ... & Zhou, J. (2009). Snapshot of iron response in Shewanella oneidensis by gene network reconstruction. BMC genomics, 10(1), 1-17.
[55] Crack, J., Green, J., & Thomson, A. J. (2004). Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR). Journal of Biological Chemistry, 279(10), 9278-9286.
[56] Cruz-García, C., Murray, A. E., Rodrigues, J. L., Gralnick, J. A., McCue, L. A., Romine, M. F., ... & Tiedje, J. M. (2011). Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensisMR-1. BMC microbiology, 11(1), 1-14.