Viral encephalitis associated with COVID-19 and following COVID-19 vaccination: a review of the literature and three cases.

Nadia Mahmoud Tawfiq Jebril1,2, Ali Abbas Hashim Al-Musawi3,4, Charles Braungardt2

1Department of Biology, College of Sciences for Women, University of Babylon, Iraq;
2 School of Biological and Marine Sciences, University of Plymouth, Drake’s Circus, Plymouth PL4 8AA, UK
3Consultant Neurosurgeon FRCS Glasg, FRCSED, FRCSCE, FACS, FIBMS, University of Babylon, Babylon, Iraq
4Department of Neurosurgery, Hammurabi College of Medicine, University of Babylon, Babylon, Iraq

ARTICLE INFO
Received: 25 / 03 /2023
Accepted: 19 / 06 / 2023
Available online:10 / 12 / 2023
DOI: 10.3765/juaps.2023.139243.1049

Keywords:
COVID-19, nervous system, encephalitis, human coronaviruses, neuroinvasion, respiratory viral infection, SARS-CoV-2.

ABSTRACT
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) infects the human upper respiratory, causing coronavirus disease 2019 (COVID-19) with symptoms of acute respiratory distress syndrome (ARDS). However, in susceptible populations, such as immune-compromised individuals and the elderly, the symptoms develop into more severe diseases (e.g., pneumonia). Data reported in neurological studies have also confirmed that SARS-CoV-2 has neuroinvasive capacities, as it could be spread from the respiratory tract to the nervous system (NS), causing encephalitis. Compared to neuroinvasive human coronaviruses, SARS-CoV-2 may damage the nervous system, causing neurological diseases. Opportunistic human SARS-CoV-2 pathogens could be connected with the activating or the exacerbation of several neurological complaints whose etiology leftovers ailing unstated. In this review, details about human coronaviruses that have been linked to the possibility of developing a disease of the nervous system were illustrated. Three cases of COVID-19 patients who had viral encephalitis were discussed in this review: one patient presented with encephalopathy; the other patient with acute hemorrhagic necrotizing encephalopathy. And third patient presented with viral encephalitis succeeding COVID-19 vaccination.

Introduction
Coronavirus disease 2019 was declared as a pandemic virus due to COVID-19 cases recorded in many countries. Mainly, the virus of SARS-CoV-2 causing coronavirus disease by infecting the human upper respiratory tract, causing acute respiratory distress syndrome (ARDS) [1, 2]. Over the days, like SARS-CoV and MERS-CoV, the SARS-CoV-2 have also been identified to cause illnesses outside the respiratory tract, gastrointestinal symptoms [3] and nervous system. Viruses can enter the NS through the hematogenous or neuronal retrograde route, and infect target cells, neurons [4]. The NS, a system of involved cellular and molecular interactions, sustains life and orchestrates homeostasis.

Possible mechanisms of brain diseases by SARS-CoV-2

The NS is not protected to severe, tenacious, or dormant viral contagions, that causing some neurological disease. Viral encephalitis is the most prevalent disease known to NS infection. Recently, two studies reported a possible complication of SARS-CoV-2 presence of within the human NS, mainly encephalopathy. Physical examination and medical history can be used to diagnose encephalopathy, such as brain imaging Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) images, which can show any swelling of the brain, cerebrospinal fluid (CSF), in which any changes in this fluid can indicate infection and tenderness in the brain. Electroencephalogram (EEG) records the brain's electrical activity, in which certain abnormal patterns may indicate a diagnosis of encephalitis. In addition, biomedical tests such as blood tests, urine tests, or swab from the throat can be shown for viruses or other infectious causes.
In respiratory system, a SARS-CoV-2 infection may cause a nasal epithelium disorder, which also causes a large number of viruses to be released from the lower side to the epithelium barrier and reach the bloodstream or lymph and spread to other tissues, including the brain. Human coronavirus HCoV has been found a pass through the neuroepithelium and increase access to the olfactory bulb (OB) and eventually to other regions of the brain[5]. Therefore, SARS-CoV-2 could usage the identical way to enter the NS, as shown in Fig 1. On the other hand, SARS-CoV has been found to infect myeloid cells [6] to influence the inborn protection and to distribute to other tissues, counting the NS. Therefore, SARS-CoV-2 could use the alternative route (hematogenous) to penetrate the NS.

Figure 1. Possible mechanisms of SARS-CoV-2 through the neuroepithelium and increase access to regions of the brain.

Human SARS-CoV-2 in the NS: conceivable related neurological pathologies

Since neurogenic possible of virus types in humans and animals, it is often suggested that a possible correlation exists among the attendance of human coronaviruses everywhere, causing human neurological diseases over the years [6]. It is now found that SARS-CoV-2 is not always narrowed to the upper respiratory tract and that they can enter the NS. In the next sections, two cases of patients with encephalopathy who were diagnosed with COVID-19 were discussed.

Case 1: Potential encephalopathy

The first COVID-19 case is a 74-year-old male diagnosed with encephalopathy [7]. The male was a severed alteration in mental status that requires a neurologist consultant. The diagnosis consisted of an CT image of the head, and EEG of the male. The CT scan displayed no severe irregularities with the occurrence of an area of encephalomalacia in the left chronological region of the head. EEG showed binary deceleration and principal deceleration in the left temporal part of head with abruptly defined surfs.

Case 2: Potential acute necrotizing encephalopathy (ANE)

The second case is a female airline worker with COVID-19 diagnosed with ANE [5]. Head tomographs confirmed symmetric hypoattenuation inside the two-medial thalamus with standard CT angiography and CT venogram tomography.

Case 3: Potential encephalitis following COVID-19 vaccination

A case of patient after COVID-19 vaccination diagnosed with encephalitis [8]. The female of 65-year-old was a severed alteration in mental status that requires a neurologist consultant. However, the case was unable to conclude whether receiving the COVID-19 vaccine was the reason of encephalitis. On the other hand, other cases [9], [10], [11], [12], [13], [14], [15] suggested that the encephalitis developed after receiving COVID-19 vaccination.

Discussion

Human SARS-CoV-2 pathogens could be associated with the triggering or the exacerbation of several neurological disorders. Recently, a review of [16] suggested worldwide distribution and multifactorial pathogenic mechanisms of viral encephalitis associated with COVID-19, as shown in Fig.2.

Figure 2. Possible mechanisms of SARS-CoV-2 neuropathogenesis [16].

On the other hand, Chen et al.[17] outlined three potential mechanisms of SARS-CoV-2 invasion into the CNS (Fig. 3). Started with infection of the olfactory epithelium, then transport through axonal that enables viral reaches CNS complete the blood or lymphatic system.
Conclusion

Wellbeing care breadwinners should be conscious that COVID-19 patients can have encephalopathy during hospitalization. This encephalitis should be accompanied by the recognition of SARS-CoV-2 in cerebrospinal fluid by Real-Time Polymerase Chain Reaction (RT-PCR).

Funding Sources

No any external funding received for this work.

Notes

None.

Acknowledgment

None

Abbreviations

COVID-19, Coronavirus disease 2019; NS, nervous system; ANE, acute necrotizing encephalopathy.

References

References: