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 The main objective of this paper is to present random ordinary differential equations 

with multi fractional derivatives and to use the homotopy analysis method to approximate 

the solution of such equations with different generations of the Weiner process or Brawnian 

motion. One of the most important and efficient methods for solving various mathematical 

problems with different operators, linear and nonlinear, ordinary or partial differential 

equations, integral equations, and so on, is the homotopy analysis method. 
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1. Introduction: 

Ordinary differentiation and integration are 

generalized to an arbitrary (non-integer) order in 

fractional calculus. The subject is as old as differential 

calculus and dates back to the time when Leibnitz and 

Newton invented differential calculus. As a result, 

scientists and researchers in various fields of science and 

engineering have been paying close attention to 

fractional calculus and its applications for many years. 

Furthermore, due to so many nonlinear problems cannot 

be solved exactly, approximate and numerical methods 

appear to be necessary and must be used [18]. 

Oldham and Spainir [16], who wrote in this field or 

subject, began their study in 1968 with the realization 

that the use of half-order derivatives and integrals leads 

to a more economical and useful formulation of certain 

electrochemical problems than the classical approaches.  
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This discovery stimulated our interest not only in 

the applications of derivative and integral notions to 

arbitrary order, but also in the fundamental mathematical 

properties of these fascinating operators. 

Ordinary differential equations or partial 

differential equations with derivatives of any real or 

complex order are fractional differential equations [5]. 

Several authors have previously stated such equations 

and studied their theoretical or numerical solutions. 

The He's approximation methods, which include the 

Homotopy Analysis Method (HAM), [1,3,8,13], 

Homotopy Perturbation Method (HPM), [9], Variational 

Iteration Method (VIM), [6,10], are among the 

approximate analytical methods used for solving 

differential equations in operator form with fractional 

derivatives or integrals. 

Fractional random ordinary differential equations 

are a combination of fractional ordinary differential 

equations and random ordinary differential equations 

[14,20]. In addition to the preceding, extensive research 

has been devoted in recent decades to studying 

differential equations with random perturbations, which 
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are sometimes referred to in stochastic calculus as a 

random process with specific properties [2,6,7,17]. 

Furthermore, random differential equations are 

differential equations that involve random or stochastic 

processes. As a result, methods dealing with such 

equations struggle with difficulty [12]. As consequence, 

random differential equations, as a subset of stochastic 

differential equations, are considered in this article to 

appear in the stochastic process without derivation. 

The HAM will be used in this paper to find the 

approximate solution of certain types of multi-term 

fractional random ODEs with Caputo fractional 

derivatives that satisfy the existence and uniqueness 

theorem conditions. 

 

2. Basic Concepts 

Some preliminary information and basic concepts 

related to this study are provided in this section for 

completeness. We begin with the fundamental 

definitions of fractional calculus, which will be used 

later in the formulation of the problem in this study and 

its solution using the proposed approach. 
 

Definition 1, [16]. Let           be a function,   a 

positive real number,   a positive integer satisfying 

        and   is the gamma function. The left 

and right Riemann-Liouville fractional integrals of order 

  are given respectively by: 

𝐼
 

  

𝑡

 

  𝑡  
1

    
∫  𝑡  𝑠   1  𝑠  𝑠𝑠

𝑡

 
  

𝐼
 

  

𝑡

 

  𝑡  
1

    
∫  𝑡  𝑠   1  𝑠  𝑠𝑠

 

𝑡
,  

where          ,     ,    ,       and 

𝑡       . 
 

In fractional differential equations and because of 

the occurrence of the initial conditions, the left 

Riemann-Liouville fractional integral will be used, 

which is therefore will abbreviated as 𝐼
  

𝑡

 

 in this study. 

 

Definition 2, [4,22]. The Caputo fractional order 

derivative of a suitable function           is: 

 𝑡
    𝑡  

1

      
∫  𝑡  𝑠     1 

   
 𝑠  𝑠𝑠

𝑡

 
,  

for 𝑡       ,      and        ,    . 

Some of the most important properties of fractional 

order derivative and integrals may be summarized in the 

next [2,6,10,16]: 

1. If        ,     and   is any function then 

𝐼𝑡
    𝑡

    𝑡    𝑡  ∑         
𝑡 

  
  1
   . 

2.  𝑡
  𝐼𝑡

     𝑡    𝑡 . 

3.  𝑡
  𝑡  

    1 

      1 
𝑡   , for     ,     . 

4. 𝐼𝑡
   𝑡  

    1 

      1 
𝑡   , for    ,     . 

5. 𝐼𝑡
     𝑡   𝑡

    𝑡    𝑡 . 

6. If          ,            ,     and if 

     ,       then:  

i.  𝑡
   𝑡

    𝑡   𝑡
   𝑡

    𝑡   𝑡
      𝑡 . 

ii.  𝑡
  𝐼𝑡

     𝑡  𝐼𝑡
    𝑡

    𝑡   𝑡
      𝑡  

𝐼𝑡
       𝑡 . 

7.  𝑡
    1 1         1  𝑡

    1     𝑡
      , 

    ,  1     . 

8. 𝐼𝑡
     1 1         1 𝐼𝑡

     1    𝐼𝑡
       , 

    ,  1     . 

Stochastic calculus, which is related to this study, is 

a branch of mathematics that deals with random (or 

chance) occurrences in which an experiment occurs with 

finite or infinite possible outcomes. As a result, it is 

necessary to first explain the meaning of the following 

notations: sample space is the collection of all possible 

results of a random experiment, and it is represented by 

   

In set language, the sample space is known as the 

universal set; thus, the sample space   is a set consisting 

of a mutually exclusive, collectively exhaustive 

collection of all potential results of a random 

experiment. That is,      1          denotes the 

set of all finite outcomes, whereas      1       

denotes the set of all countably infinite outcomes, and 

denotes the set of  unaccountably outcomes. A random 

variable is also a real-valued function     ,     that 

can be measured with the probability measure   

[2,6,19]. 
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When stochastic processes occur, stochastic and 

random differential equations appear, which have many 

types, one of which is called the Wiener process or the 

Brownian motion, which is used in this paper and can be 

defined as follows: 
 

Definition 3, [12]. Let         be a probability space. 

A stochastic process   𝑡 𝑡       , is said to be a 

Brownian motion or Wiener process, if: 

1.                   . 

2. For   𝑡  𝑡1    𝑡 , the increments  𝑡 
 

 𝑡 
,  𝑡 

  𝑡 
, …,  𝑡 

  𝑡   
 are independent, 

for any    . 

3. For an arbitrary 𝑡 and    ,  𝑡    𝑡 has a 

Gaussian distribution with mean 0 and variance  . 

where   stands for the  -algebra of subsets of a sample 

space   and   for a probability measure. 
 

Among the main objectives of this article is to find 

the solution of the following multi-fractional order 

random ODE:  

 𝑡
   𝑡  𝑡    𝑡  𝑡  𝑡  𝑡   𝑡

   𝑡  𝑡  , …(1) 

for all 𝑡       ,      and with initial conditions: 

  
   

       
 ,            , 

where   
  ,   

   are the Caputo fractional order 

derivatives of order  , such that        , 

     ,    ,   
   

 are given initial conditions and 

  is any given continuously differentiable function with 

respect to  𝑡. 

 

3. Existence and Uniqueness of Solution of Fractional 

Order Random Ordinary Differential Equations  

In this section, we will state and prove the existence and 

uniqueness theorem of eq. (1) using Schauder fixed 

point theorem. For the purpose of simplicity, the proof 

will be carried out for        . 
 

Theorem 1. Let           
          
→    be a function 

which satisfies:  

i.   𝑡  𝑡  𝑡  𝑡   𝑡
   𝑡  𝑡   is Lebesgue measurable 

with respect to 𝑡       . 

ii.   𝑡  𝑡  𝑡  𝑡   𝑡
   𝑡  𝑡   is continuous with 

respect to 𝑡       . 

iii. There exists a constant         and a real valued 

function   𝑡  which belongs to the Banach space 

 
 

        , 
1

 
   of all continuous functions on       

with the norm defined by ‖ ‖1   (∫    𝑠  
 

 𝑠𝑠
 

 
)
 

 

such that ‖  𝑡  𝑡  𝑡  𝑡   𝑡
   𝑡  𝑡  ‖    𝑡 , 

for all 𝑡       . 

Then for any        , there exist at least one solution 

of the fractional order random ODE (1) on       , 

where: 

     {  
     

 
(
   

1  
)
1  

}

 

   

  

  (∫    𝑠  
 

 𝑠𝑠
 

 
)
 

. 

Proof. From i, whenever   is Lebesgue measurable, then 

the integral equation equivalently related to the 

fractional order random ODE (1) is: 

 𝑡  𝑡         
1

    
∫   𝑠           

𝑡

 
 

  
          𝑠𝑠. 

Since        , i.e., the function is at most has first 

order derivative, then for  𝑡   1          and define 

the norm over the Banach space  1          to be the 

supremum norm over the region     𝑡  

 1          ‖ 𝑡    ‖    , which is closed and 

bunded. Define the following operator: 

   𝑡  𝑡          
1

    
∫  𝑡  𝑠   1𝑡

 
 

  𝑠             
          𝑠𝑠. 

By using Hölder inequality it is obtained that  𝑡  

𝑠   1  𝑠             
          is Lebsegue 

integrable with respect to 𝑠     𝑡 , for all 𝑡        and 

∫ ‖ 𝑡  𝑠   1  𝑠             
         ‖𝑠𝑠

𝑡

 
 

(∫   𝑡  𝑠   1 
 

   𝑠𝑠
𝑡

 
)
1  

(∫ (  𝑠 )
 

 𝑠𝑠
𝑡

 
)
 

.  …(2) 

Now, to show that    𝑡   , for any  𝑡     

By Hölder inequality and condition iii, we obtain that  
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‖   𝑡    ‖  

‖
1

    
∫  𝑡  

𝑡

 

𝑠   1  𝑠             
         𝑠𝑠‖  

 
1

    
∫  𝑡  𝑠   1𝑡

 
 

‖  𝑠             
         ‖𝑠𝑠 

 
1

    
∫  𝑡  𝑠   1  𝑠  𝑠𝑠

𝑡

 
  

 
1

    
(∫   𝑡  𝑠   1 

 

   𝑠𝑠
𝑡

 
)
1  

(∫    𝑠  
 

 𝑠𝑠
𝑡

 
)
 

, 

from inequality (2) 

 
1

    

1

    
(∫  𝑡  𝑠 

   

   𝑠𝑠
𝑡

 
)
1  

(∫    𝑠  
 

 𝑠𝑠
𝑡

 
)
 

  

 
1

    
(

  𝑡   
   
   

  

   

   
 1

|
 

𝑡

)

1  

(∫    𝑠  
 

 𝑠𝑠
𝑡

 
)
 

  

 
1

    
(

  𝑡   
   
   

   

   

|
 

𝑡

)

1  

(∫    𝑠  
 

 𝑠𝑠
𝑡

 
)
 

  

 
1

    
(

1  

   
)
1  

𝑡   ∫ (  𝑠 
 

 𝑠𝑠)
 

𝑡

 
  

 
1

    
(

1  

   
)
1  

       , for all 𝑡       ,  

so ‖   𝑡    ‖    and therefore    𝑡   .  

Now, we have to show   is continuous for any    
  𝑡  

 ,         and since       ‖   
  𝑡‖   , then 

         
  𝑡   𝑡  𝑡 , for 𝑡       .  

Thus, by condition ii, we have:  

        𝑡  𝑡    
  𝑡   𝑡

     
  𝑡   

  𝑡  𝑡  𝑡  𝑡   𝑡
   𝑡  𝑡  ,  

and hence as  
          
→    

   𝑡      ‖  𝑡  𝑡    
  𝑡   𝑡

     
  𝑡   

  𝑡  𝑡   𝑡  𝑡   𝑡
   𝑡  𝑡  ‖

            
→    .  …(3) 

So:  

‖     
     𝑡 ‖  
1

    
‖∫  𝑡  

𝑡

 

𝑠   1 (  𝑠       
       

     
      

  𝑠             
         )‖𝑠𝑠  

 
  

    1 
    

𝑡      
‖  𝑡  𝑡     

  𝑡   𝑡
     

  𝑡   

  𝑡  𝑡   𝑡  𝑡   𝑡
   𝑡  𝑡  ‖.  

Hence, from (3), getting ‖     
     𝑡 ‖

            
→     as 

 
          
→   , i.e.,   is a continuous operator. 

Now, to show that   is compact, i.e., to show that 

the family of functions     𝑡   𝑡     is uniformly 

bounded and equicontinuous on  , i.e., to show that   is 

compact for all  𝑡   . We get ‖   𝑡 ‖  ‖ 𝑡‖   , 

i.e.,     𝑡   𝑡     is uniformly bounded and for any 

𝑡1 𝑡       , 𝑡1  𝑡 , by using the Hölder inequality, 

we have: 

‖   𝑡 
     𝑡 

 ‖  
1

    
‖∫  𝑡  

𝑡 

 

𝑠   1  𝑠             
         𝑠𝑠  

∫  𝑡1  
𝑡 

 

𝑠   1  𝑠             
         𝑠𝑠‖  

 
1

    
‖∫  𝑡  

𝑡 

 

𝑠   1  𝑠             
         𝑠𝑠  

∫  𝑡  
𝑡 

𝑡 

𝑠   1  𝑠             
         𝑠𝑠  

∫  𝑡1  
𝑡 

 

𝑠   1  𝑠             
         𝑠𝑠‖  

 
1

    
‖∫   𝑡  𝑠   1  

𝑡 

 

 𝑡1  𝑠   1   𝑠             
         𝑠𝑠  

∫  𝑡  
𝑡 

𝑡 

𝑠   1  𝑠             
         𝑠𝑠‖  

 
1

    
∫ ‖  𝑡  𝑠   1  

𝑡 

 

 𝑡1  

𝑠   1   𝑠             
         ‖𝑠𝑠  

1

    
∫ ‖ 𝑡  

𝑡 

𝑡 

𝑠   1  𝑠             
         ‖𝑠𝑠  
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1

    
∫   𝑡1  𝑠   1   𝑡      1   𝑠 

𝑡 

 
𝑠𝑠  

1

    
∫  𝑡  𝑠   1  𝑠 𝑠𝑠

𝑡 

𝑡 
  

 
1

    
(∫   𝑡1  𝑠   1  

𝑡 

 

 𝑡  𝑠   1 𝑠𝑠)

 

   
(∫    𝑠  

 

 𝑠𝑠
𝑡 

 
)
 

 

1

    
(∫  𝑡  𝑠   1𝑠𝑠

𝑡 

𝑡 
)

 

   
(∫    𝑠  

 

 
𝑡 

𝑡 
)
 

  

 
  

    
(

1  

  1
)
1  

 𝑡  𝑡1 
   .  

As 𝑡1
             
→   𝑡 , then     𝑡   𝑡     is eqicontinuous on 

      and hence   is compact.  

By Schauder fixed point theorem, there exists  𝑡
   , 

such that   𝑡
   𝑡

 , which means that  𝑡
  is a fixed point 

of the operator   and hence  𝑡
  is a solution of fractional 

random ODE (1) over      .    

It is worth noting that when f satisfies the Lipschtiz 

condition, the solution is unique, and the proof of 

Theorem 1 can be proved for and          ,  but 

the proof is more advanced. 

 

4. Application of the HAM for Multi-Fractional 

Order Random ODEs  

Several authors have successfully used the HAM as 

an operator equation to solve a wide range of nonlinear 

problems in science and engineering [6,11,13,15,21]. To 

begin using this method to solve multi-fractional order 

random ODEs, consider the general form of this 

equation in operators form: 

   𝑡  𝑡    ,  …(4)  

where   is a nonlinear operator and  𝑡 is the unknown 

function to be determined as the solution of problem (4).  

Suppose that    
  𝑡  is the initial guess 

approximate solution of the exact solution of eq. (4), 

    be an auxiliary parameter,   𝑡    an auxiliary 

function and   an auxiliary linear operator with 

property: 

   𝑡  𝑡    , when  𝑡  𝑡   .  …(5)  

Construct using         as an embedding parameter, 

the so called zero-order deformation: 

   𝑡  𝑡       
  𝑡       𝑡    𝑡  𝑡    , 

 …(6) 

where  𝑡 is the solution of the operator equation which 

depends on h,   𝑡 ,  ,    
  𝑡  and  , where    , the 

zero-order deformation given by eq. (6) becomes 

   𝑡  𝑡       
  𝑡    , and so    𝑡  𝑡     

     
  𝑡  . Then taking   1, will implies to: 

 𝑡  𝑡       
  𝑡 ,  …(7)  

and when    , since     and   𝑡    the zero-

order deformation (6) becomes: 

   𝑡  𝑡      .  …(8)  

As a result,  𝑡  𝑡    is the solution of the nonlinear 

equation (4) that defines the  𝑡 -order deformation 

derivatives: 

   
  𝑡  

1

  

          

   |
   

,          …(9) 

If    
  𝑡  in eq. (9) exist at     for all values of  , 

then we get the following series solution when 

expanding eq. (10) using Taylor series expansion:  

 𝑡  𝑡   𝑡  𝑡     

    
  𝑡  ∑    

  𝑡 
 
  1 .  …(10) 

The previously mentioned equation grants us with 

correlation between the exact solution  𝑡  𝑡  and the 

initial guess approximation    
  𝑡  with aid of the 

expression    
  𝑡 ,        , which are unknown 

till the present stage. 

The higher-order deformation equation of the next 

iterated solutions may be derived by first defining the 

vector: 

 ⃗  
  𝑡      

  𝑡   1 
  𝑡       

  𝑡   …(11)  

Differentiating eq. (6)  -times with respect to the 

embedding parameter   and dividing by    after setting 

   , we have the so-called  𝑡 -order deformation 

equation: 

     
  𝑡         1 

  𝑡    

   𝑡     ⃗  1 
  𝑡  ,  …(12)  

where: 

   ,
         
         

  …(13) 



P- ISSN  1991-8941   E-ISSN 2706-6703              Journal of University of Anbar for Pure Science (JUAPS)          Open Access                                                     

2023,(17), ( 2 ):343– 354                                            

 

348 
 

    ⃗  1 
  𝑡   

1

   1  

               

     |
   

…(14)  

Thus, we can get    
   ,  1 

   , … to be the high order 

deformation equation (12) one after one in ascending 

order. Finally, the  𝑡 -order approximate solution of eq. 

(14) is given by: 

 𝑡  𝑡  ∑    
  𝑡 

 
   .  …(15) 

The proposed study of this section is to apply the HAM 

to solve random multi fractional order ODE, which is 

presented in eqs. (1) which is proceeded by considering: 

   𝑡  𝑡     

  
𝑡
  𝑡  𝑡      𝑡  𝑡   𝑡  𝑡   𝑡

   𝑡  𝑡  , 

 …(16) 

and hence the approximated unknown function  𝑡 can be 

evaluated as in the above approach. 

 

5. Convergence Analysis  

To prove the convergence of the approximate 

solution of the multi-term random fractional order ODE 

(1) presented in Section 4 to the exact solution. It is 

interesting that, as long as the series (15) converges, it 

can be concluded that: 

∑     ⃗  1 
  𝑡  

 
  1   .  

If the series ∑    
  𝑡    

    is convergent, then it can 

be described as:  

 𝑡  𝑡  ∑    
  𝑡    

   ,  

and it holds that: 

         
  𝑡     ,  …(17)  

using eq. (13) and the left-hand side of eq. (12), then: 

∑ [   
  𝑡         1 

  𝑡 ]   
  1  1 

  𝑡    

   
  𝑡     1 

  𝑡       
  𝑡    

   
  𝑡         

  𝑡       1 
  𝑡    

   
  𝑡   ,  

so according to eq. (17), we have:  

∑ [   
  𝑡         1 

  𝑡 ]
 
  1  

         
  𝑡     .  

Hence, using the linear operator    𝑡
  ,       

 ,     and the related properties of fractional 

calculus, one may get:  

∑  [   
  𝑡          1 

  𝑡 ]
 
  1  

 ∑ [   
  𝑡          1 

  𝑡 ]
 
  1   ,  

and eq. (12) satisfies:  

∑  [   
  𝑡          1 

  𝑡 ]
 
  1  

 𝑡  𝑡  ∑   ( ⃗  1 
  𝑡 )

 
  1   ,  

and since    ,  𝑡  𝑡   , then: 

∑   ( ⃗  1 
   ) 

  1   .  

Substituting eqs. (16) and (14) into the previous equation 

and by reducing it, since the series (15) is convergent, 

then we have: 

∑   ( ⃗  1 
  𝑡 )

 
  1  ∑ *  𝑡

     1 
  𝑡   

  1

 𝑡
     1 

  𝑡     1 
  𝑡         𝑡  𝑡 +  

 

∑  𝑡
     1 

  𝑡 
 
  1  

∑  𝑡
     1 

  𝑡 
 
  1  ∑    1 

  𝑡 
 
  1  

∑        𝑡  𝑡 
 
  1   

  𝑡
  ∑    

  𝑡 
 
     𝑡

  ∑    
  𝑡 

 
    

 𝑡  𝑡   𝑡  𝑡     

where is the nonhomogeneous term and form initial 

conditions and eq. (10), getting:  

 𝑡  𝑡  ∑    
  𝑡 

 
   .  

Thus  𝑡  𝑡  satisfy eq. (1) and it must be the exact 

solution for the initial value problem (1). 

 

6. Numerical Simulation 

In this section, three examples will be considered 

and solved by simulating 1000 and 10000 generations of 

Brownian motions. 
 

Example 1. Consider the linear multi-fractional order 

random ODE: 

 𝑡
     𝑡  𝑡   𝑡

     𝑡  𝑡       𝑡 , 𝑡  [0,1],…(18) 

subject to the initial condition         . 

To start the solution, consider a fixed Brownian motion 

and let: 

 𝑡  𝑡       𝑡 ,  …(19) 

and consider the initial guess solution    
  𝑡  

        . Hence: 
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   𝑡  𝑡    𝑡
     𝑡  𝑡   𝑡

     𝑡  𝑡       𝑡 . 

 …(20) 

Let    𝑡
     𝑡  𝑡 ,      and  𝑡  𝑡   . Thus, 

according to eq. (18),  

 𝑡
    [   

  𝑡       1 
  𝑡 ]       ⃗  1 

  𝑡   

 …(21) 

    ⃗  1 
  𝑡   

 𝑡
       1 

  𝑡   𝑡
       1 

  𝑡     

        𝑡 .  …(22) 

The zero-order deformation is: 

𝐼𝑡
     𝑡

    [ 1 
  𝑡   1   

  𝑡 ]  

 𝐼𝑡
     1    

  𝑡  ,   

where: 

 1    
  𝑡    𝑡

       
  𝑡   𝑡

       
  𝑡     

 1      𝑡   

  𝑡
       

  𝑡   𝑡
       

  𝑡       𝑡 .  

Now, applying Riemann-Liouville fractional integral of 

order 2.7 to the both sides of eq. (21) and using the 

initial approximate solution (19), then the functions 

 1 
  𝑡  may be evaluated as: 

 1 
  𝑡   𝐼𝑡

     1    
  𝑡    

 

 𝐼𝑡
    [  𝑡

       
  𝑡  

 𝑡
       

  𝑡       𝑡 ]  

 

 [ 𝐼𝑡
     𝑡

       
  𝑡  

𝐼𝑡
     𝑡

       
  𝑡  𝐼𝑡

          𝑡  ]  

  [  𝐼𝑡
        𝐼𝑡

          𝑡  ]  

    
1

      
𝑡    

       

      
𝑡   .  

The higher order deformation is started by letting   

 , then: 

𝐼𝑡
     𝑡

    [   
  𝑡     1 

  𝑡 ]  

 𝐼𝑡
        1 

  𝑡  ,  

where: 

    1 
  𝑡    𝑡

    1 
  𝑡    𝑡

     1 
  𝑡  

           𝑡   

  𝑡
    1 

  𝑡    𝑡
     1 

  𝑡 .  

Hence: 

   
  𝑡   1 

  𝑡  𝐼𝑡
    (    1 

  𝑡  )  

 

 1 
  𝑡  

𝐼𝑡
    (  𝑡

    1 
  𝑡    𝑡

     1 
  𝑡 )  

  1 
  𝑡   1 

  𝑡  𝐼𝑡
    ( 1 

  𝑡 )  

  𝐼𝑡
    (  

1

      
𝑡    

       

      
𝑡   )  

 
1

      
𝑡    

1

      
𝑡    

       

    
𝑡 .  

Also, if    , then applying similarly as in the above, 

getting: 

   
  𝑡              𝑡        𝑡  

           𝑡             𝑡   .  

So on, one may proceed to find    
  𝑡 ,    

  𝑡 , … 

and thus the solution is given by: 

 𝑡  𝑡     
  𝑡   1 

  𝑡     
  𝑡     

 

            𝑡    

           𝑡                  

          𝑡  

           𝑡         𝑡 .  …(23) 

Figures 1 presents the approximate solution (23) of 

eq. (18) in terms of    
  𝑡 ,  1 

  𝑡 ,    
  𝑡  and 

   
  𝑡  with 1000 and 10000 generations of Brownian 

motion. 
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Figure 1. The approximate solution of Example 1 using the 

HAM for different number of Brownian motions 1000 and 

10000, respectively. 

 

Example 2. Consider the linear multi-term fractional 

order random ODE: 

 𝑡
1    𝑡  𝑡     𝑡

     𝑡  𝑡   𝑡  𝑡 , …(24) 

for all 𝑡        subject to the initial condition        

  
       , and  𝑡  𝑡  

    

  1   
𝑡    

    

      
 𝑡

 𝑡1  . 

First, choosing the first guest approximation    
  𝑡  

 , and hence  

 𝑡  𝑡  𝑡    𝑡
1    𝑡  𝑡     𝑡

     𝑡  𝑡   𝑡  𝑡 ,  

then: 

 [   
  𝑡       1 

  𝑡 ]  

  𝑡     ( ⃗  1 
  𝑡 ),  …(25) 

where: 

  ( ⃗  1 
  𝑡 )   𝑡

1      1 
  𝑡  

 𝑡
  𝑡

       1 
  𝑡         𝑡  𝑡 ,  …(26) 

So, letting    𝑡
1   ,      and  𝑡  𝑡   , and 

hence eq. (25) will take the form: 

 𝑡
1   [   

  𝑡       1 
  𝑡 ]  

   ( ⃗  1 
  𝑡 ).  …(27) 

Applying the Riemann-Liouville factional order integral 

𝐼𝑡
1     to the both sides of eq. (27) and using the initial 

approximate solution    
  𝑡   , then the functions 

 1 
  𝑡 ,    

  𝑡 ,   may be evaluated one after one in 

order by solving the linear higher-order deformation 

equations: 

𝐼𝑡
1     𝑡

1   [   
  𝑡       1 

  𝑡 ]  

 𝐼𝑡
1      ( ⃗  1 

  𝑡 ). …(28) 

If    , then: 

𝐼𝑡
1     𝑡

1   [ 1 
  𝑡   1   

  𝑡 ]  

 𝐼𝑡
1     1(   

  𝑡 ),  

and since    
  𝑡   ,  1   , the last equation will 

take the form: 

 1 
  𝑡   𝐼𝑡

1     1(   
  𝑡 )  

 

 𝐼𝑡
1    [  𝑡

1      
  𝑡  

 𝑡
  𝑡

       
  𝑡      1  𝑡  𝑡 ]  

  [   
  𝑡   𝑡

 𝐼𝑡
1 1     

  𝑡  

𝐼𝑡
1     𝑡  𝑡 ]  

 𝐼𝑡
1     𝑡  𝑡  𝑡  

    

    1 
 𝑡

 𝑡  1.  

If    , then: 

𝐼𝑡
1     𝑡

1   [   
  𝑡     1 

  𝑡 ]  

 𝐼𝑡
1      ( 1 

  𝑡 ),  

since     , for all         and hence: 

   
  𝑡   1 

  𝑡   𝐼𝑡
1      ( 1 

  𝑡 ),  

where: 

  ( 1 
  𝑡 )   𝑡

1    1 
  𝑡   𝑡

  𝑡
     1 

  𝑡 .  

Thus: 

   
  𝑡   1 

  𝑡    1 
  𝑡   𝑡

 𝐼𝑡
1 1  *𝑡  

    

    1 
 𝑡

 𝑡  1+,  

and so, carrying the required calculations, getting: 

   
  𝑡   

    

    1 
 𝑡

 𝑡  1  
    

      
 𝑡

 𝑡   .  

Similarly, we can calculate    
  𝑡 , which is found to 

be: 

   
  𝑡  

    

      
 𝑡

 𝑡    
    

      
 𝑡

 𝑡   ,  

and so on.  

Using eq. (23), the approximate solution of eq. (24) 

using the HAM up to the third terms is given by Figure 2 

with 1000 and 10000 generations of Brownian motion. 
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Figure 2. The approximate solution of Example 2 using 

the HAM for different number of Brownian motions 

1000 and 10000, respectively. 

  

Example 3. Consider the nonlinear fractional order 

random ODE: 

 𝑡
     𝑡  𝑡   𝑡

     𝑡
   𝑡  

  

  1   
𝑡    

   
 

      
𝑡1  , 𝑡       , …(29) 

with initial condition         . 

To solve eq. (29) by means of HAM, we choose the 

initial approximation    
  𝑡    and letting: 

 𝑡  𝑡  𝑡    
𝑡
    𝑡  𝑡   𝑡

     𝑡
   𝑡  

  

  1   
𝑡    

   
 

      
𝑡1  .  

According to eqs. (12)-(14) and with    𝑡
    , 

     and  𝑡     , we have: 

 𝑡
    [   

  𝑡       1 
  𝑡 ]  

   ( ⃗  1 
  𝑡 ),  

and upon integrating both sides of the last equation with 

fractional order 0.5, implies to: 

𝐼𝑡
      𝑡

    [   
  𝑡       1 

  𝑡 ]  

 𝐼𝑡
       ( ⃗  1 

  𝑡 ),  

where: 

  ( ⃗  1 
  𝑡 )   𝑡

       1 
  𝑡  

∑  𝑡
    (     𝑡    1     𝑡 )

  1
       

 1 (
  

  1   
𝑡    

   
 

      
𝑡1  ).  

Thus, if    : 

𝐼𝑡
      𝑡

    [ 1 
  𝑡   1   

  𝑡 ]   𝐼𝑡
      1(   

  𝑡 )  

 1(   
  𝑡 )  

 𝑡
       

  𝑡  ∑  𝑡
    (   

  𝑡     
  𝑡 )

 
       

 1 (
  

  1   
𝑡    

   
 

      
𝑡1  )  

  𝑡
       

  𝑡   𝑡
    (   

  𝑡    
  𝑡 )  

  

  1   
𝑡    

   
 

      
𝑡1    

  
  

  1   
𝑡    

   
 

      
𝑡1  .  

Hence: 

 1 
     𝐼𝑡

     ( 
  

  1   
𝑡    

   
 

      
𝑡1  )  

 
    1   

  1   
𝑡  

   
 

      
𝑡   ,  

if    , then: 

𝐼𝑡
      𝑡

    [   
  𝑡     1 

  𝑡 ]  

 𝐼𝑡
       (   

  𝑡   1 
  𝑡 )  …(30) 

  (   
  𝑡   1 

  𝑡 )   𝑡
     1 

  𝑡  

∑  𝑡
    (     𝑡  1     𝑡 )

1
     

  𝑡
     1 

  𝑡    𝑡
   (   

  𝑡  1 
  𝑡 )

   

  𝑡
     1 

  𝑡 ,  

and thus from eq. (30):  

   
  𝑡   1 

  𝑡  𝐼𝑡
       (   

  𝑡   1 
  𝑡 )  

  1 
  𝑡  𝐼𝑡

     (  𝑡
     1 

  𝑡 )   .  

Similarly, if    , then: 

𝐼𝑡
      𝑡

    [   
  𝑡       

  𝑡 ]  

 𝐼𝑡
       (   

  𝑡   1 
  𝑡     

  𝑡 )  

  (   
  𝑡   1 

  𝑡     
  𝑡 )   𝑡

       
  𝑡  

∑  𝑡
    (     𝑡        𝑡 )

 
     

  𝑡
       

  𝑡   𝑡
    (   

  𝑡    
  𝑡  

 1 

   𝑡     
  𝑡  1 

  𝑡 )  

  𝑡
    ( 1 

   𝑡 ),  
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and so after carrying out some calculations: 

   
  𝑡     

  𝑡  𝐼𝑡
      𝑡

    ( 1 

   𝑡 )  

  𝐼𝑡
     ( 1 

   𝑡 )  

 

         𝑡    𝑡
  

        𝑡    𝑡
         𝑡    𝑡

 .  

Similarly, if    , we will get    
  𝑡   , while if 

   , implies: 

   
  𝑡          𝑡    𝑡

          𝑡    𝑡
  

        𝑡    𝑡
          𝑡  1 𝑡

 ,  

and so on. 

Finally, the approximate solution is given by: 

 𝑡  𝑡     
  𝑡   1 

  𝑡     
  𝑡      

         𝑡    𝑡
         𝑡    𝑡

          𝑡    𝑡
  

      𝑡  1 𝑡
          𝑡    𝑡

  

         𝑡    𝑡
          𝑡 𝑡.  …(31) 

The approximate solution (31) of eq. (29) in terms of 

   
  𝑡 ,  1 

  𝑡 ,    
  𝑡  and    

  𝑡  with 1000 and 

10000 generations of Brownian motion are drown 

respectively in Figure 3. 

 

 

Figure 3. The approximate solution of Example 3 using 

the HAM for 1000 and 10000 number of Brownian 

motions, respectively. 

 

7. Conclusions  

The HAM was used in this study to derive 

approximate solutions to linear and nonlinear multi-

fractional random ODEs. In conclusion, HAM produces 

accurate numerical results for such problems, and the 

convergence of the series solution can be controlled by 

selecting the appropriate auxiliary and homptopy 

parameters. 
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