The χ-Subgroups of Special linear group SL(n,q)

Afrah M. Ibraheem
Al-Mustansiriyah University -College of Education

ARTICLE INFO

Received: 21 / 7/2009
Accepted: 3/1/2010
Available online: 14/6/2012
DOI: 10.37652/juaps.2010.43992
Keywords:
χ-Subgroups,
Special linear group ,
SL(n,q)

ABSTRACT

In this paper we find χ-subgroup for the irreducible characters χ of the Special linear group $\operatorname{SL}(\mathrm{n}, \mathrm{q})$ when $\mathrm{n}=2,3$..

INTRODUCTION

Let G be a finite group and χ be an irreducible character of G. DIXEN in [1] define the subgroup H of G as a χ-subgroup if there exists a linear character θ of H such that $\left\langle\chi_{H}, \theta\right\rangle=1$, where \langle,$\rangle is the inner$ product of restriction of χ to H and θ. And he using the character restriction method of χ-subgroup to construct a representation of G affording χ. In this paper we find χ-subgroups for the irreducible characters χ of the Special linear group $\operatorname{SL}(\mathrm{n}, \mathrm{q})$ when $\mathrm{n}=2,3$ and $\mathrm{q}=\mathrm{p}^{\mathrm{k}}$ for some prime $\mathrm{p}, \mathrm{k} \in \mathrm{N}$
depending on some tables related by $\operatorname{SL}(\mathrm{n}, \mathrm{q})$.

PRELIMINARIES

Let G be a finite group ,and let \mathbf{C} be a field of Complex numbers . We give in this section some concepts of general group theory and representation theory that we shall use latter, and we can found in [3]

Definition (1.1):

Let $\mathrm{GL}(\mathrm{n}, \mathrm{C})$ be the group of all non singular $\mathrm{n} \times \mathrm{n}$ matrices over \mathbf{C}, then a representation of G is a homomorphism R of G into $\mathrm{GL}(\mathrm{n}, \mathrm{C})$ for some $\mathrm{n} \geq 1$. The number n is called the degree of R and is denoted by deg R.
A representation R is called irreducible if $R(G)$ is an irreducible matrix group.

Definition (1.2):

Let R be a representation of G . Then the character χ of G afforded by R is a function of G into C given by $\chi(\mathrm{g})=\operatorname{tr}(\mathrm{R}(\mathrm{g}))$ for $g \in G$, which is the sum of the diagonal entries of $\mathrm{R}(\mathrm{g})$.
The degree of χ is $\chi(1)=\operatorname{deg} \mathrm{R}$.

[^0]A character χ is an irreducible character if R is irreducible. And χ is called the regular character if $\chi(1)=|\mathrm{G}|$ and $\chi(\mathrm{g})=0$ for $g \in G$ and $\mathrm{g} \neq 1$.
Characters of order 1 are called linear character. And the function $1(\mathrm{~g})=1$ for all $g \in G$ is a linear character and is called the principal character, and denoted by 1. We denote the set of all irreducible characters of G by $\operatorname{Irr}(\mathrm{G})$.

Definition (1.3):

Let ϕ and ψ be characters of G . Then

$$
\langle\phi, \psi\rangle=\frac{1}{|G|} \sum_{g \in G} \phi(g) \overline{\psi(g)}
$$

is the inner product of ϕ and ψ.

Definition (1.4):

Let H be a subgroup of G , the restriction χ_{H} of a character χ of G to H is a character of H and we can write

$$
\chi_{H}=\sum_{\psi \in \operatorname{Irr}(H)} \eta_{\psi} \psi, \text { for suitable integers }
$$

η_{ψ}.
Note that if $\chi_{H} \in \operatorname{Irr}(H)$ then $\chi \in \operatorname{Irr}(G)$.

Definition (1.5):

If H is a subgroup of G and χ and ϕ are characters of G and H , respectively, then the Frobenius reciprocity Theorem shows that

$$
\left\langle\phi, \chi_{H}\right\rangle=\left\langle\phi^{G}, \chi\right\rangle, \phi^{G} \text { is the induced }
$$

character on G .

Lemma (1.6): (The Frattini Argument)

Let G be a group and N be a normal subgroup of G. If P is a Sylow p -subgroup of N then $\mathrm{G}=$ $\mathrm{N}_{\mathrm{G}}(\mathrm{P}) \mathrm{N}$.

Definition (1.7) [4]:

Let F be a field , and $G L(n, F)$ is the group of invertible $\mathrm{n} \times \mathrm{n}$ matrices over F . The Special linear group $\operatorname{SL}(n, F)$ is the subgroup of $G L(n, F)$ which contains all matrices in GL($n, F)$ of determinant one. When we replace F by the prime power p^{k}, for some prime $p, k \in N$, we have $\operatorname{SL}(n, q), q=p^{k}$.

2. THE χ-SUBGROUP OF $\operatorname{SL}(2, q)$

Let $G=S L(2, q)$, where $q=p^{k}$ for some prime p, and let
$H=\left\{\left(\begin{array}{cc}1 & 0 \\ \beta & 1\end{array}\right): \beta \in F_{q}\right\}, \mathrm{F}_{\mathrm{q}}$ a field with q elements.
Then H is abelian Sylow p -subgroup of G of order q . In this section we show H is a χ-subgroup for all irreducible characters of G.We shall need some tables which we can see in [2]. The following tables are the tables of values of characters of G on elements 1 and $\mathrm{l} \neq \mathrm{h} \in \mathrm{H}$, when q is odd and when q is even.

Table (2.1): The values of characters of $\operatorname{SL}(2, q)$ on elements of H when q is odd .

	$\mathbf{1}$	\mathbf{h}
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
\mathbf{p}	\mathbf{q}	$\mathbf{0}$
$\mathbf{\Psi}_{\mathbf{i}}$	$\mathbf{q}-1$	$\mathbf{- 1}$
$\boldsymbol{\theta}_{\mathbf{j}}$	$\mathbf{q}+\mathbf{1}$	$\mathbf{1}$
$\boldsymbol{\eta}_{1}$	$(\mathbf{q}-\mathbf{1}) / \mathbf{2}$	$(-1 \pm \sqrt{\varepsilon q}) / 2$
$\boldsymbol{\eta}_{2}$	$(\mathbf{q}-\mathbf{1}) / \mathbf{2}$	$(-1 \mp \sqrt{\varepsilon q}) / 2$
ξ_{1}	$(\mathbf{q}+\mathbf{1}) / \mathbf{2}$	$(-1 \pm \sqrt{\varepsilon q}) / 2$
ξ_{2}	$(\mathbf{q}+\mathbf{1}) / \mathbf{2}$	$(-1 \mp \sqrt{\varepsilon q}) / 2$

where $\varepsilon=(-1)^{(q-1) / 2}, 1 \leq \mathrm{i} \leq(\mathrm{q}-1) / 2$ and $1 \leq \mathrm{j} \leq(\mathrm{q}-3) / 2$. Note that $\eta_{1}(\mathrm{~h})+\eta_{2}(\mathrm{~h})=-1$ and $\xi_{1}(\mathrm{~h})+\xi_{2}(\mathrm{~h})=1$ for all 1 $\neq \mathrm{h} \in \mathrm{H}$.

Table (2.2): The values of characters of $\operatorname{SL}(2, q)$ on elements of H when q is even.

	$\mathbf{1}$	\mathbf{h}
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{\rho}$	\mathbf{q}	$\mathbf{0}$
Ψ_{i}	$\mathbf{q - 1}$	$\mathbf{- 1}$
$\boldsymbol{\theta}_{\mathrm{j}}$	$\mathbf{q + 1}$	$\mathbf{1}$

where $1 \leq \mathrm{i} \leq \mathrm{q} / 2$ and $1 \leq \mathrm{j} \leq(\mathrm{q}-2) / 2$.

Lemma (2.3) [3]:

Let χ be an irreducible character of a group G and suppose $\mathrm{p} \nmid(|\mathrm{G}| / \chi(1))$ for some prime p . Then $\chi(\mathrm{g})$ $=0$ whenever $\mathrm{p} \backslash \mathrm{o}(\mathrm{g})$. In particular if G has a Sylow
subgroup H and an irreducible character χ such that $|\mathrm{H}|$ $=\chi(1)$,then χ_{H} is the regular character of H and so $\left\langle\chi_{H}, \varphi\right\rangle=1$ for each linear character φ of H.

Theorem (2.4) :

Let $\mathrm{G}=\mathrm{SL}(2, \mathrm{q})$ for $\mathrm{q}=\mathrm{p}^{\mathrm{k}} \geq 4$ and H be a Sylow p-subgroup of G. Then for all characters χ of G, H is a χ-subgroup.

Proof:

By lemma(2.3)the character ρ_{H} of degree q is the regular character of H .
Since H is abelian, all irreducible characters $\varphi_{1}=1, \varphi_{2}$ $, \ldots, \varphi_{q}$ of H are linear. On the other hand $\psi_{j}(h)=-1$ and $\theta_{\mathrm{i}}(\mathrm{h})=1$ for all $1 \neq \mathrm{h} \in \mathrm{H}$ so $\quad\left(\psi_{\mathrm{j}}\right)_{\mathrm{H}}=\rho_{\mathrm{H}}-1$ and $\left(\theta_{\mathrm{i}}\right)_{\mathrm{H}}=\rho_{\mathrm{H}}+1$.
Also when q is odd we have $\eta_{1}(\mathrm{~h})+\eta_{2}(\mathrm{~h})=-1$ and $\xi_{1}(\mathrm{~h})+\xi_{2}(\mathrm{~h})=1$ for all $1 \neq \mathrm{h} \in \mathrm{H}$ so $\left(\eta_{1}\right)_{\mathrm{H}^{+}}\left(\eta_{2}\right)_{\mathrm{H}}=\rho_{\mathrm{H}^{-}}$ 1 and $\left(\xi_{1}\right)_{\mathrm{H}}+\left(\xi_{2}\right)_{\mathrm{H}}=\rho_{\mathrm{H}}+1$.
Now since $\rho_{H}=\sum_{i=1}^{q} \varphi_{i}$ and $\mathrm{q} \geq 4$, therefore the restriction of each irreducible
character of G to H has at least one linear constituent with multiplicity 1.

3. THE χ-SUBGROUP OF $\operatorname{SL}(3, q)$

Let $G=\operatorname{SL}(3, q)$, where $q=p^{k}$ for some prime p. In this section we shall show that for each irreducible character χ of G either a sylow subgroup H or a psubgroup of order q^{2} of G is a χ-subgroup.

The character tables of G are known by the work [6] ,we shall use those tables to get the values of characters on the different conjugacy classes of G which contain the elements of the Sylow subgroup H defined below .

Define $\quad H=\left\{\left(\begin{array}{ccc}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right): a, b, c \in F_{q}\right\} ; \mathrm{F}_{\mathrm{q}}$ is a
field with q elements.
Then the order of H is q^{3} and H is a Sylow p-subgroup for G.

Now we found the following table in [6] that shows the structure of conjugacy classes of G which contain some elements of the Sylow \quad-subgroup H, where $d=\operatorname{gcd}(3, q-$ 1), $\varepsilon \in \mathrm{GF}(\mathrm{q})$ and ω is a cube root of unity.

Table (3.1): Conjugacy classes of $\operatorname{SL}(3, q)$ which contain elements of the Sylow p -subgroup H for $\mathrm{d}=1,3$.

	Canonical representative	Parameters
$C_{1}^{(k)}$	$\left(\begin{array}{ccc}\omega^{k} & 0 & 0 \\ 0 & \omega^{k} & 0 \\ 0 & 0 & \omega^{k}\end{array}\right)$	$o \leq k \leq(d-1)$
$C_{2}{ }^{(k)}$	$\left(\begin{array}{ccc}\omega^{k} & 0 & 0 \\ 1 & \omega^{k} & 0 \\ 0 & 0 & \omega^{k}\end{array}\right)$	$o \leq k \leq(d-1)$
$C_{3}^{(k, l)}$	$\left(\begin{array}{ccc}\omega^{k} & 0 & 0 \\ \varepsilon^{I} & \omega^{k} & 0 \\ 0 & \varepsilon^{I} & \omega^{k}\end{array}\right)$	$o \leq k, I \leq(d-1)$

Note that each element of H is contained in one of the conjugacy classes $C_{1}{ }^{(0)}, C_{2}{ }^{(0)}$ and $C_{3}{ }^{(0, I)}$ of G.

The centre $Z(H)=\left\{\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ z & 0 & 1\end{array}\right): z \in F_{q}\right\}$ is an elementary abelian p-group of order q.
Using the canonical representative elements of conjugacy classes $C_{1}{ }^{(0)}, C_{2}{ }^{(0)}$ and $C_{3}{ }^{(0, I)}$ we see that the minimal polynomials of elements of these conjugacy classes have degrees 1,2 and 3 , respectively and the minimal polynomials of nontrivial elements of $\mathrm{Z}(\mathrm{H})$ have degree 2 so nontrivial elements of $\mathrm{Z}(\mathrm{H})$ are contained in the conjugacy class $C_{2}{ }^{(0)}$.
Now we can see the the following lemma in [4] which gives us some properties of H .

Lemma (3.2) :

Suppose $G=S L(3, q)$ where q is a power of the prime p. If H is a Sylow p-subgroup of G then we have:

1. H has $\mathrm{q}^{2}+\mathrm{q}-1$ conjugacy classes.
2. H has q^{2} linear characters and $\mathrm{q}-1$ non-linear characters of degree q such that their values on nontrivial elements of $Z(H)$ are 1 and $q \omega^{i}$ for some $1 \leq i \leq p$ respectively, where ω is a primitive $\mathrm{p}^{\text {th }}$ root of unity.
3. If τ is an irreducible character of degree q of H then $\tau(\mathrm{x})=0$ for $x \notin Z(H)$, and $\sum_{l \neq z \in Z(H)} \tau(z)=-q$.

Now we can see the following table in [5] which shows the values of the restriction of the irreducible characters of group SL $(3, q)$ on the elements of Sylow subgroup H when $d=1$. Since $d=1, I=0$.

Table (3.3): Values of characters of $\operatorname{SL}(3, q)$ on elements of H when $\mathrm{d}=1$

	$C_{1}{ }^{(0)}$	$C_{2}{ }^{(0)}$	$C_{3}{ }^{(0,0)}$
1	1	1	1
ψ	$\mathrm{q}^{2}+\mathrm{q}$	q	0
ρ	q^{3}	0	0
ζ_{i}	$\mathrm{q}^{\mathbf{2}}+\mathrm{q}+1$	q +1	1
η_{j}	$\mathbf{q}^{3}+\mathbf{q}^{\mathbf{2}}+\mathrm{q}$	q	0
$\varepsilon_{\text {r }}$	$\begin{gathered} q^{3}+2 q^{2}+ \\ 2 q+1 \end{gathered}$	$2 \mathrm{q}+1$	1
$\mu_{\text {s }}$	$\mathrm{q}^{\mathbf{3}} \mathbf{- 1}$	-1	-1
v_{t}	$\mathrm{q}^{\mathbf{3}}-\mathrm{q}^{\mathbf{2}}-\mathrm{q}+1$	1-q	1

where $1 \leq i, j \leq q-2,1 \leq r \leq\left(q^{2}+5 q+6\right) / 6,1 \leq s \leq\left(q^{2}-\right.$ q) $/ 2$ and $1 \leq t \leq\left(q^{2}+q\right) / 3$.

Lemma (3.4) :

Let $\mathrm{G}=\operatorname{SL}(3, q)$ where $\mathrm{q}>2$ is a power of the prime p and let H be the Sylow p-subgroup of G and ψ be the irreducible character of degree $q^{2}+q$ of G. Then

1. $\left\langle\psi_{H}, 1\right\rangle=2$.
2. $\left\langle\psi_{H}, \tau\right\rangle=1$ for each irreducible character τ of degree q of H .
3. There exist some non-principal linear characters φ and ϕ of H such that $\left\langle\psi_{H}, \varphi\right\rangle=0$ and $\left\langle\psi_{H}, \phi\right\rangle=1$.

Proof: Suppose that

$$
\mathrm{x}=\left(\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 1
\end{array}\right) \in H
$$

is contained in the conjugacy class $C_{2}{ }^{(0)}$ of G. Since each element in $C_{2}{ }^{(0)}$ has a minimal polynomial of degree 2 ,

$$
(\mathrm{x}-1)^{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
a c & 0 & 0
\end{array}\right)=0
$$

This, together with $\mathrm{x} \notin \mathrm{Z}(\mathrm{H})$ implies $\mathrm{a}=0$ or $\mathrm{c}=0$ but not both. Therefore the number of possibilities for the elements x with above properties is $2 \mathrm{q}(\mathrm{q}-1)$. The elements of $\mathrm{Z}(\mathrm{H})$ are also contained in $C_{2}{ }^{(0)}$ and the values of ψ on $C_{1}^{(0)}, C_{2}{ }^{(0)}$ and $C_{3}{ }^{(0,0)}$ are $\mathrm{q}^{2}+\mathrm{q}, \mathrm{q}$ and 0 , respectively. Thus we have
$\left\langle\psi_{H}, 1\right\rangle=\frac{1}{|H|_{x \in H}} \psi_{H}(x) \left\lvert\,(x)=\frac{1}{q^{3}}\left(\psi_{H}(1)+\sum_{1 * \in z Z(H)} \psi_{H}(z)+\sum_{z z z(H)} \psi_{H}(z)\right)\right.$
$\ldots=\frac{1}{q^{3}}\left(\left(q^{2}+q\right)+(q-1) q+2 q(q-1) q\right)=2$.
Now suppose τ is an irreducible character of degree q of H . By using table(3.3) for the value of ψ on the conjugacy class $C_{2}{ }^{(0)}$ of G which contains the elements of $\mathrm{Z}(\mathrm{H})$, by lemma (3.2) we have

$$
\begin{aligned}
& \left\langle\psi_{H}, \tau\right\rangle=\frac{1}{|H|} \sum_{z e H} \psi_{H}(x) \overline{\tau(x)} \\
& \cdots \cdots \cdots \cdots \cdots=\frac{1}{q^{3}}\left(\psi_{H}(1) \tau(1)+\sum_{\mid z z z\left(\psi_{H}\right)} \psi_{H}\left(z \overline{\tau(z)}+\sum_{z z(t(H)} \psi_{H}(z) \overline{\tau(z)}\right)\right. \\
& \cdots \cdots \cdots \cdots \cdots=\frac{1}{q^{3}\left(\left(q^{2}+q\right) q-q^{2}+0\right)=1 .}
\end{aligned}
$$

Therefore for each irreducible character τ of degree q of $\mathrm{H}\left\langle\psi_{H}, \tau\right\rangle=1$ as claimed.

Now since $\left\langle\psi_{H}, \tau\right\rangle=1$ for each irreducible character τ of degree q of H , hence $\psi_{H}=\sum_{i=1}^{q-1} \tau_{i}+\sum_{j=1}^{t} m_{j} \phi_{j}$ where ϕ_{j} are linear characters of H with multiplicity m_{j}. Since $\psi(1)=q^{2}+q$ and $\sum_{i=1}^{q-1} \tau_{i}(1)=q^{2}-q$ we have $\sum_{j=1}^{t} m_{j} \phi_{j}(1)=2 q$. Since H possesses $\mathrm{q}^{2}-1$ nonprincipal linear characters, there exists at least one non-principal linear character φ such that $\left\langle\psi_{H}, \varphi\right\rangle=0$.Put $\quad\left\langle\psi_{H}, 1\right\rangle=m . \quad$ Since $\left(v_{t}\right)_{H}=\chi_{H}-\psi_{H}+1$ we have $\left\langle\left(v_{t}\right)_{H}, 1\right\rangle=2-m$. Hence
$\mathrm{m} \leq 2$ and so $\sum_{j=1}^{y} m_{j} \phi_{j}(1) \geq 2 q-2$ where \sum runs over $\phi_{j} \neq 1$. This means
there exists some non-principal linear character ϕ of H such that $\left\langle\psi_{H}, \phi\right\rangle \neq 0$. If we suppose $\left\langle\psi_{H}, \phi\right\rangle=n$, then $\left\langle\left(v_{t}\right)_{H}, \phi\right\rangle=1-n$. Since $\mathrm{n} \neq 0$ this shows that n $=1$.Therefore there exists a non-principal linear character ϕ such that $\left\langle\psi_{H}, \phi\right\rangle=1$.

Theorem (3.5) :

Let $\mathrm{G}=\operatorname{SL}(3, \mathrm{q})$ where $\mathrm{q}>2$ is a power of prime p and $\mathrm{d}=1$ and let H be a sylow p -subgroup of G . Then for all irreducible characters χ of G, H is a χ subgroup.

Proof:

By table (3.3) the characters ρ and ψ have degrees q^{3} and $\mathrm{q}^{2}+\mathrm{q}$ respectively.
Now if we restrict them to H we see that for all nontrivial $\mathrm{x} \in \mathrm{H}$ we have $\rho_{H}(x)=0$ and $\psi_{H}(x)=q$ or 0 . Thus from the values of the other characters of G on H we get:

$$
\left(\zeta_{i}\right)_{H}=\psi_{H}+1, \quad\left(\eta_{j}\right)_{H}=\rho_{H}+\psi_{H},
$$

$\left(\varepsilon_{r}\right)_{H}=\rho_{H}+2 \psi_{H}+1, \quad\left(\mu_{s}\right)_{H}=\rho_{H}-1$, and $\left(v_{t}\right)_{H}=\rho_{H}-\psi_{H}+1$.
Since $\rho(1)=q^{3}$ is the order of H , Lemma (2.3) shows that ρ_{H} is the regular character of H and $\rho_{H}=\sum_{v \in \operatorname{lr}(H)} v(1) v$. On the other hand by the lemma (3.4) there exists a non-principal linear character φ of H such that $\left\langle\psi_{H}, \varphi\right\rangle=0$ then, since $\left\langle\rho_{H}, \varphi\right\rangle=1$, we have

$$
\left\langle\rho_{H}+\psi_{H}, \varphi\right\rangle=1,\left\langle\rho_{H}+2 \psi_{H}+1, \varphi\right\rangle=1,
$$

$$
\left\langle\rho_{H}-1, \varphi\right\rangle=1 \text { and }\left\langle\rho_{H}-\psi_{H}+1, \varphi\right\rangle=1
$$

Also by the lemma (2.3) there exists a non-principal linear character ϕ of H such that $\left\langle\psi_{H}, \phi\right\rangle=1$. Thus $\left\langle\psi_{H}+1, \phi\right\rangle=1$, and H is a χ-subgroup.

Now we consider the case that $\mathrm{d}=3$.The following table in [6] show of the values of irreducible characters of $\operatorname{SL}(3, q)$ on the conjugacy classes which contain the elements of H.

Table (3.6): Values of characters of $\operatorname{SL}(3, \mathrm{q})$ on elements of H when $\mathrm{d}=3$

	$C_{1}^{(0)}$	$C_{2}{ }^{(0)}$	$C_{3}{ }^{(0,0)}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\boldsymbol{\psi}$	$\mathbf{q}^{2}+\mathbf{q}$	\mathbf{q}	$\mathbf{0}$
\mathbf{p}	\mathbf{q}^{3}	$\mathbf{0}$	$\mathbf{0}$
ζ_{i}	$\mathbf{q}^{2}+\mathbf{q}+\mathbf{1}$	$\mathbf{q}+\mathbf{1}$	$\mathbf{1}$

η_{j}	$\mathrm{q}^{3}+\mathrm{q}^{2}+\mathrm{q}$	9	0
θ_{k}	$\begin{aligned} & \left(q^{3}+2 q^{2}\right. \\ & +2 q+1) / 3 \end{aligned}$	$\begin{gathered} (2 q+1) / 3 \text { or } \\ (1-q) / 3 \\ \hline \end{gathered}$	$\begin{aligned} & (2 q+1) / 3 \\ & \text { or }(1-q) / 3 \\ & \hline \end{aligned}$
ε_{r}	$\underset{\substack{3 \\ q^{3}+2 q^{2}+1}}{ }$	2q +1	1
$\mu_{\text {s }}$	$\mathrm{q}^{3}-1$	-1	-1
v_{t}	$\mathrm{q}^{3}-\mathrm{q}^{2}-\mathrm{q}+1$	1-q	1
ω_{m}	$\begin{gathered} \left(q^{3}-q^{2}-q\right. \\ +1) / 3 \end{gathered}$	$\begin{gathered} (1-q) / 3 \text { or }(2 q \\ +1) / 3 \end{gathered}$	$\begin{aligned} & (1-q) / 3 \text { or } \\ & (2 q+1) / 3 \end{aligned}$
γ_{n}	$\begin{gathered} \left(q^{3}-q^{2}-q\right. \\ +1) / 3 \\ \hline \end{gathered}$	$\begin{gathered} (1-q) / 3 \text { or }(2 q \\ +1) / 3 \end{gathered}$	$\begin{aligned} & (1-q) / 3 \text { or } \\ & (2 q+1) / 3 \\ & \hline \end{aligned}$

where $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{q}-2,1 \leq \mathrm{r} \leq\left(\mathrm{q}^{2}+5 \mathrm{q}+4\right) / 6,1 \leq \mathrm{s} \leq\left(\mathrm{q}^{2}-\right.$ q) $/ 2,1 \leq \mathrm{t} \leq\left(\mathrm{q}^{2}+\mathrm{q}-2\right) / 3$ and $1 \leq \mathrm{k}, \mathrm{m}, \mathrm{n} \leq 3$.

By the values of characters ω_{m} and γ_{n} on the conjugacy classes $C_{1}{ }^{(0)}, C_{2}{ }^{(0)}$ and $C_{3}^{(0, I)}$ we have

$$
\left\{\left(\omega_{1}\right)_{H},\left(\omega_{2}\right)_{H},\left(\omega_{3}\right)_{H}\right\}=\left\{\left(\gamma_{1}\right)_{H},\left(\gamma_{2}\right)_{H},\left(\gamma_{3}\right)_{H}\right\} .
$$

Definition (3.7) :

Let H be a normal subgroup of group G and α and β be characters
of H. Then β is called a conjugate of α in G if there exists $\mathrm{g} \in \mathrm{G}$ such that $\beta=\alpha^{g}$, where

$$
\alpha^{g}(h)=\alpha\left(g h g^{-1}\right)=\alpha\left(h^{g^{-1}}\right) \text { for } \mathrm{h} \in \mathrm{H} .
$$

Theorem (3.8) [6]:

Let $\mathrm{G}=\mathrm{GL}(3, \mathrm{q})$ then the elements of each set of characters $\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\},\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ and $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ of $\operatorname{SL}(3, q)$ are conjugate in G .

Lemma (3.9):

Let H be a subgroup of $\mathrm{G}, \mathrm{x} \in \mathrm{N}_{\mathrm{G}}(\mathrm{H})$ and ϑ be a character of H . Then ϑ^{x} is a character of H and $\vartheta^{x}(1)=\vartheta(1)$. Furthermore $\left\langle\vartheta^{x}, \vartheta^{x}\right\rangle=\langle\vartheta, \vartheta\rangle$ and in particular ϑ^{x} is irreducible if and only if ϑ is irreducible.

Proof:

Since $x \in N_{G}(H)$ so $x h x^{-1} \in H$ for $h \in H$. On the other hand by definition (3.7)

$$
\vartheta^{x}(h)=\vartheta\left(x h x^{-1}\right)=\vartheta\left(h^{x^{-1}}\right) \text { so } \vartheta^{x} \text { is a character of }
$$

H. Also

$$
\begin{aligned}
& \vartheta^{x}(1)=\vartheta\left(x x^{-1}\right)=\vartheta(1) . \\
& \left\langle\vartheta^{x}, \vartheta^{x}\right\rangle=\frac{1}{|H|} \sum_{h \in H} \vartheta^{x}(h) \overline{\vartheta^{x}(h)}=\frac{1}{|H|} \sum_{h \in H} \vartheta^{x}\left(h^{x^{-1}}\right) \overline{\vartheta\left(h^{x^{-1}}\right)} \\
& \ldots \ldots \ldots \ldots=\frac{1}{|H|} \sum_{z=h^{-1}} \vartheta(z) \overline{\vartheta(z)}=\langle\vartheta, \vartheta\rangle .
\end{aligned}
$$

Therefore $\vartheta^{x} \in \operatorname{Irr}(\mathrm{H})$ if and only if $\vartheta \in \operatorname{Irr}(\mathrm{H})$.

Lemma (3.10) :

Let G be a normal subgroup of group L and H be a Sylow subgroup
of G. Let χ and ϑ be irreducible characters of G and H , respectively. Let $\mathrm{I} \in \mathrm{L}$ then

$$
\left\langle\chi_{H}, \vartheta\right\rangle=\left\langle\chi_{H}^{I}, \vartheta^{x}\right\rangle \text { for some } \mathrm{x} \in \mathrm{~N}_{\mathrm{L}}(\mathrm{H}) .
$$

In particular $\left\langle\chi_{H}, 1\right\rangle=\left\langle\chi_{H}^{I}, 1\right\rangle$.

Proof:

By the Frattini argument lemma (1.6) shows $\mathrm{L}=$ $\mathrm{GN}_{\mathrm{L}}(\mathrm{H})$. If $\mathrm{I} \in \mathrm{L}$ then
$l=g x$ where $g \in G$ and $x \in N_{L}(H)$.Thus

$$
\begin{aligned}
& \left\langle\chi_{H}, \vartheta\right\rangle=\frac{1}{|H|} \sum_{h \in H} \chi_{H}(h) \vartheta(h)=\frac{1}{|H|} \sum_{h \in H} \chi_{H}\left(h^{x^{-1}}\right) \vartheta\left(h^{x^{-1}}\right) \\
& \ldots \ldots \ldots \ldots=\frac{1}{|H|} \sum_{h \in H^{x}=H} \chi_{H}^{x}(h) \vartheta^{x}(h)=\left\langle\chi_{H}^{x}, \vartheta^{x}\right\rangle .
\end{aligned}
$$

Since $\chi \in \operatorname{Irr}(\mathrm{G})$ so $\chi^{\mathrm{g}}=\chi$ thus $\chi_{H}^{I}=\chi_{H}^{g x}=\chi_{H}^{x}$ and this implies $\left\langle\chi_{H}, \vartheta\right\rangle=\left\langle\chi_{H}^{I}, \vartheta^{x}\right\rangle$.
In particular if $\vartheta=\mathbf{1}$ then since $\mathbf{1}^{\mathrm{x}}=\mathbf{1}$ so $\left\langle\chi_{H}, 1\right\rangle=\left\langle\chi_{H}^{I}, 1\right\rangle$.

Theorem (3.11):

Let $\mathrm{G}=\operatorname{SL}(3, \mathrm{q})$ where $\mathrm{q}>2$ is a power of the prime p and $\mathrm{d}=3$.
Let H be a Sylow p -subgroup of G . If χ is an irreducible character of G then H is a χ-subgroup.

Proof:

We use the same method as we used to prove theorem (3.5). Thus ρ_{H} is the regular character of H and ψ_{H} is the character of degree $q^{2}+q$ of H . Therefore for characters $\zeta_{\mathrm{i}}, \eta_{\mathrm{j}}, \varepsilon_{\mathrm{r}}, \mu_{\mathrm{s}}$ and v_{t} we have:

$$
\left(\zeta_{i}\right)_{H}=\psi_{H}+1, \quad\left(\eta_{j}\right)_{H}=\rho_{H}+\psi_{H},
$$

$\left(\varepsilon_{r}\right)_{H}=\rho_{H}+2 \psi_{H}+1, \quad\left(\mu_{s}\right)_{H}=\rho_{H}-1$, and $\left(v_{t}\right)_{H}=\rho_{H}-\psi_{H}+1$.
Lemma (3.4) shows H has some non-principal linear characters φ and ϕ such that $\left\langle\psi_{H}, \varphi\right\rangle=0$ and $\left\langle\psi_{H}, \phi\right\rangle=1$. Since ρ_{H} is the regular character of H so $\left\langle\rho_{H}, \varphi\right\rangle=\left\langle\rho_{H}, \phi\right\rangle=1$. Hence
$\left\langle\left(\eta_{j}\right)_{H}, \varphi\right\rangle=\left\langle\left(\varepsilon_{r}\right)_{H}, \varphi\right\rangle=\left\langle\left(\mu_{s}\right)_{H}, \varphi\right\rangle=\left\langle\left(v_{t}\right)_{H}, \varphi\right\rangle=1$ and $\left\langle\left(\zeta_{i}\right)_{H}, \varphi\right\rangle=0$.Also $\left\langle\psi_{H}, \phi\right\rangle=1$ implies $\left\langle\left(\zeta_{i}\right)_{H}, \phi\right\rangle=1$.Therefore the restriction of characters $\zeta_{\mathrm{i}}, \eta_{\mathrm{j}}, \varepsilon_{\mathrm{r}}, \mu_{\mathrm{s}}$ and v_{t} on H have at least one linear constituent with multiplicity one. So the only
remaining characters to consider are $\theta_{\mathrm{k}}, \omega_{\mathrm{m}}$ and γ_{n} for 1 $\leq \mathrm{k}, \mathrm{m}, \mathrm{n} \leq 3$.
Using the Frobenius reciprocity we have,
$\left\langle\eta_{j}, \varphi^{G}\right\rangle=\left\langle\varepsilon_{r}, \varphi^{G}\right\rangle=\left\langle\mu_{s}, \varphi^{G}\right\rangle=\left\langle v_{t}, \varphi^{G}\right\rangle=1$ and $\left\langle\zeta_{i}, \varphi^{G}\right\rangle=0$. Also if
$\left\langle\left(\theta_{k}\right)_{H}, \varphi\right\rangle=K_{k},\left\langle\left(\omega_{m}\right)_{H}, \varphi\right\rangle=M_{m} \quad \operatorname{and}\left\langle\left(\gamma_{n}\right)_{H}, \varphi\right\rangle=N_{n}$,
then
$\left\langle\theta_{k}, \varphi^{G}\right\rangle=K_{k},\left\langle\omega_{m}, \varphi^{G}\right\rangle=M_{m} \quad$ and $\left\langle\gamma_{n}, \varphi^{G}\right\rangle=N_{n}$, for 1 $\leq \mathrm{k}, \mathrm{m}, \mathrm{n} \leq 3$.
Therefore if we induce φ to G we get
$\varphi^{\sigma}=\rho+(q-2) \eta_{j}+\left(\left(q^{2}-5 q+4\right) / 6\right) \varepsilon_{r}+\left(\left(q^{2}-q\right) / 2\right) \mu_{s}+\left(\left(q^{2}+q-2\right) / 3\right) v_{t}$ $+\sum_{k=1}^{3} K_{k} \theta_{k}+\sum_{m=1}^{3} M_{m} \omega_{m}+\sum_{n=1}^{3} N_{n} \gamma_{n}$.
Using the fact that $\varphi^{\mathrm{G}}(1)=|\mathrm{G}: \mathrm{H}| \varphi(1)$ we calculate the value at 1 and simplify the above equation we have $|G: H|=-q^{2}-q^{3}+q^{5}+\sum_{k=1}^{3} K_{k} \theta_{k}(1)+\sum_{m=1}^{3} M_{m} \omega_{m}(1)+\sum_{n=1}^{3} N_{n} \gamma_{n}(1)$.
Since $|G: H|=q^{5}-q^{3}-q^{2}+1$ we get
$\sum_{k=1}^{3} K_{k} \theta_{k}(1)+\sum_{m=1}^{3} M_{m} \omega_{m}(1)+\sum_{n=1}^{3} N_{n} \gamma_{n}(1)=q^{3}+1$.
Since

$$
\theta_{\mathrm{k}}(1)=\left(q^{3}+2 q^{2}+2 q+1\right) / 3 \text { and } \omega_{m}(1)=\gamma_{\mathrm{n}}(1)=
$$ $\left(q^{3}-q^{2}-q+1\right) / 3$

so we have
$\left(\sum_{k=1}^{3} K_{k}\right)\left(\left(\mathrm{q}^{3}+2 \mathrm{q}^{2}+2 \mathrm{q}+1\right) / 3\right)$
$+\left(\sum_{m=1}^{3} M_{m}+\sum_{n=1}^{3} N_{n}\right)\left(\left(\mathrm{q}^{3}-\mathrm{q}^{2}-\mathrm{q}+1\right) / 3\right)=\mathrm{q}^{3}+1$.
Hence by considering $K=\sum_{k=1}^{3} K_{k}, M=\sum_{m=1}^{3} M_{m}$ and $N=\sum_{n=1}^{3} N_{n}$
We get

$$
K\left(\left(q^{3}+2 q^{2}+2 q+1\right) / 3\right)+(M+N)\left(\left(q^{3}-q^{2}-q+\right.\right.
$$

$$
\text { 1) }(3)=q^{3}+1
$$

So
$(\mathrm{K}+\mathrm{M}+\mathrm{N}) \mathrm{q} 3+(2 \mathrm{~K}-(\mathrm{M}+\mathrm{N})) \mathrm{q}^{2}+((2 \mathrm{~K}-(\mathrm{M}+\mathrm{N}))$
$\mathrm{q}+(\mathrm{K}+\mathrm{M}+\mathrm{N})=3\left(\mathrm{q}^{3}+1\right)$.
Thus

$$
(A-3)\left(q^{3}+1\right)=-B\left(q^{2}+q\right)
$$

where $A=K+M+N$ and $B=2 K-(M+N)$. Since K, M and N are non negative integers and are not all equal 0 , so A is a positive integer. Since
$\mathrm{q} \backslash-\mathrm{B}(\mathrm{q} 2+\mathrm{q})$ so $\mathrm{q} \backslash \mathrm{A}-3$ and this means that $\mathrm{A}-3=\mathrm{tq}$ for some integer t. Hence simplifying equation $\left(^{*}\right)$
implies $-\mathrm{B}=\mathrm{t}\left(\mathrm{q}^{2}-\mathrm{q}+1\right)$. Thus

$$
0 \leq 3 \mathrm{~K}=\mathrm{A}+\mathrm{B}=3-\mathrm{t}(\mathrm{q}-1)^{2} .
$$

Since $d=\operatorname{gcd}(3, q-1)=3$ so we can consider $q>3$, which in this case
$\mathrm{A}=3+\mathrm{tq}>0$ implies $\mathrm{t} \geq 0$ and $\mathrm{A}+\mathrm{B}=3-\mathrm{t}(\mathrm{q}-1)^{2} \geq 0$ shows $\mathrm{t} \leq 0$.
Thus $\mathrm{t}=0, \mathrm{~A}=3$ and $\mathrm{B}=0$ which these conclude $\mathrm{K}=$ 1 and $\mathrm{M}+\mathrm{N}=2$.
Therefore $\sum_{k=1}^{3} K_{k}=1$ and $\left(\sum_{m=1}^{3} M_{m}+\sum_{n=1}^{3} N_{n}\right)=2$. So for some $\mathrm{k}, \mathrm{K}_{\mathrm{k}}=1$ and $\left\langle\left(\theta_{k}\right)_{H}, \varphi\right\rangle=1$.Let $\left\langle\left(\theta_{1}\right)_{H}, \varphi\right\rangle=1$ then by theorem (3.8) the characters θ_{1}, θ_{2} and θ_{3} are conjugate in $\mathrm{L}=$ $\operatorname{GL}(3, \mathrm{q})$.Hence by lemma (3.10) we have

$$
\left\langle\left(\theta_{1}\right)_{H}, \varphi\right\rangle=\left\langle\left(\theta_{2}\right)_{H}, \varphi^{x}\right\rangle=\left\langle\left(\theta_{3}\right)_{H}, \varphi^{y}\right\rangle=1 \text { for }
$$

some $x, y \in N_{L}(H)$.
On the other hand by lemma(3.9), φ^{x} and φ^{y} are linear characters of H so the restriction of characters θ_{1}, θ_{2} and θ_{3} to H have at least a constituent of degree one with multiplicity one.
Also by table (3.6),
$\left\{\left(\omega_{1}\right)_{H},\left(\omega_{2}\right)_{H},\left(\omega_{3}\right)_{H}\right\}=\left\{\left(\gamma_{1}\right)_{H},\left(\gamma_{2}\right)_{H},\left(\gamma_{3}\right)_{H}\right\}$ so $\sum_{m=1}^{3} M_{m}=1$ and $\sum_{n=1}^{3} N_{n}=1$.Therefore for some m and n we have $\mathrm{N}_{\mathrm{n}}=1$ and $\mathrm{M}_{\mathrm{m}}=1$ which this means $\left\langle\left(\omega_{m}\right)_{H}, \varphi\right\rangle=\left\langle\left(\gamma_{n}\right)_{H}, \varphi\right\rangle=1$. Now we can suppose $\left\langle\left(\omega_{1}\right)_{H}, \varphi\right\rangle=\left\langle\left(\gamma_{1}\right)_{H}, \varphi\right\rangle=1$. Theorem (3.8) shows the elements of each set of characters $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ and $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ are conjugate in $\mathrm{L}=\mathrm{GL}(3, \mathrm{q})$. Therefore by lemma (3.9) and lemma (3.10) there exist $\mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u} \in \mathrm{N}_{\mathrm{L}}(\mathrm{G}) \quad$ such that $\varphi^{r}, \varphi^{s}, \varphi^{t}$ and φ^{u} are linear characters of H and
$\left\langle\left\langle\left(\omega_{2}\right)_{H}, \varphi^{r}\right\rangle=\left\langle\left(\omega_{3}\right)_{H}, \varphi^{s}\right\rangle=\left\langle\left(\gamma_{2}\right)_{H}, \varphi^{r}\right\rangle=\left\langle\left(\gamma_{3}\right)_{H}, \varphi^{u}\right\rangle=1\right.$ Hence for 1 $\leq \mathrm{m}, \mathrm{n} \leq 3$ the characters $\left(\omega_{\mathrm{m}}\right)_{\mathrm{H}}$ and $\left(\gamma_{\mathrm{n}}\right)_{\mathrm{H}}$ have a linear constituent with multiplicity 1 . This completes the proof.

REFERENCES

1- J.D. Dixon, Constructing representations of finite groups, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 11, Amer. Math. Soc., Providence, RI(1998), 105-112.
2- L. Dornhoff, Group Representation Theory: Ordinary Representation Theory, Appl. Math. Marcel Dekker, New York, 1971.
3- I.M. Isaacs, Character Theory of Finite Groups, Dover. New York, 1994.

4- G. Karpilovsky, The Schur Multiplier. London Math. Soc. Monographs. Oxford Univ., New York, 1987.

5- W. Plesken and B. Souvignier, Constructing representations of finite groups and applications to finitely presented groups, J. Algebra. 202 (2000),690-703.

6-A.W. Simpson and J.S. Frame, The character tables for $\operatorname{SL}(\mathbf{3}, \mathbf{q}), \mathbf{S U}\left(\mathbf{3}, \mathbf{q}^{2}\right), \operatorname{PSL}(3, \mathbf{q}), \operatorname{PSU}(3$, $\mathbf{q}^{\mathbf{2}}$, Canad. J. Math. 25 (1983), 486-494.

شخوص الزمرة الجزئية للزمرة الخطية الخاصة SL(n,q)

> افراح محمد ابراهيم

[^0]: ——* Corresponding author at: Al-Mustansiriyah University College of Education, Iraq.E-mail address:

