Open Access

The χ -Subgroups of Special linear group SL(n,q)

Afrah M. Ibraheem

Al-Mustansiriyah University -College of Education

linear group SL(n,q) when n=2,3...

ARTICLE INFO

ABSTRACT

Received: 21 / 7 /2009 Accepted: 3 / 1 /2010 Available online: 14/6/2012 DOI: 10.37652/juaps.2010.43992 **Keywords:**

 χ -Subgroups, Special linear group, SL(n,q)

INTRODUCTION

Let G be a finite group and χ be an irreducible character of G. DIXEN in [1] define the subgroup H of G as a γ -subgroup if there exists a linear character θ of H such that $\langle \chi_H, \theta \rangle = 1$, where \langle , \rangle is the inner product of restriction of χ to H and θ . And he using the character restriction method of χ -subgroup to construct a representation of G affording χ . In this paper we find χ -subgroups for the irreducible characters χ of the Special linear group SL(n,q) when n=2,3 and $q=p^k$ for some prime p, $k \in N$

depending on some tables related by SL(n,q).

PRELIMINARIES

Let G be a finite group ,and let C be a field of We give in this section some Complex numbers . concepts of general group theory and representation theory that we shall use latter, and we can found in [3]

Definition (1.1):

Let $GL(n, \mathbf{C})$ be the group of all non singular $n \times n$ matrices over C, then a representation of G is a homomorphism R of G into $GL(n, \mathbb{C})$ for some $n \ge 1$. The number n is called the degree of R and is denoted by deg R.

A representation R is called **irreducible** if R(G) is an irreducible matrix group.

Definition (1.2):

Let R be a representation of G .Then the character χ of G afforded by R is a function of G into C given by $\chi(g)=tr(R(g))$ for $g \in G$, which is the sum of the diagonal entries of R(g). The degree of χ is $\chi(1) = \deg R$.

A character χ is **an irreducible character** if R is irreducible. And χ is called the **regular character** if $\chi(1) = |G|$ and $\chi(g) = 0$ for $g \in G$ and $g \neq 1$.

In this paper we find χ -subgroup for the irreducible characters χ of the Special

Characters of order 1 are called linear character. And the function 1(g)=1 for all $g \in G$ is a linear character and is called the principal character, and denoted by 1. We denote the set of all irreducible characters of G by Irr(G).

Definition (1.3):

Let ϕ and ψ be characters of G. Then

$$\langle \phi, \psi \rangle = \frac{1}{|G|} \sum_{g \in G} \phi(g) \overline{\psi(g)}$$

is the **inner product** of ϕ and ψ .

Definition (1.4):

Let H be a subgroup of G , the **restriction** $\gamma_{\rm H}$ of a character χ of G to H is a character of H and we can write

 $\chi_H = \sum_{\psi \in Irr(H)} \eta_{\psi} \psi$, for suitable integers

η_ψ.

Note that if $\chi_H \in Irr(H)$ then $\chi \in Irr(G)$.

Definition (1.5):

If H is a subgroup of G and χ and ϕ are characters of G and H, respectively, then the Frobenius reciprocity Theorem shows that

 $\langle \phi, \chi_H \rangle = \langle \phi^G, \chi \rangle$, ϕ^G is the induced character on G.

Lemma (1.6) : (The Frattini Argument)

^{*} Corresponding author at: Al-Mustansiriyah University -College of Education, Iraq.E-mail address:

Let G be a group and N be a normal subgroup of G. If P is a Sylow p-subgroup of N then G = $N_G(P)N$.

Definition (1.7) [4] :

Let F be a field ,and GL(n,F) is the group of invertible $n \times n$ matrices over F.The Special linear group SL(n,F) is the subgroup of GL(n,F) which contains all matrices in GL(n,F) of determinant one. When we replace F by the prime power p^k , for some prime p, $k \in N$, we have SL(n,q), $q=p^k$.

2. THE χ -SUBGROUP OF SL(2,q)

Let G = SL(2,q) ,where $q = p^k$ for some prime p ,and let

 $H = \left\{ \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix} : \beta \in F_q \right\}, F_q \text{ a field with } q \text{ elements }.$

Then H is abelian Sylow p-subgroup of G of order q. In this section we show H is a χ -subgroup for all irreducible characters of G.We shall need some tables which we can see in [2]. The following tables are the tables of values of characters of G on elements 1 and $1 \neq h \in H$, when q is odd and when q is even.

<u>Table (2.1)</u>: The values of characters of SL(2,q) on elements of H when a is odd.

elements of H when q is odd.			
	1	h	
1	1	1	
ρ	q	0	
Ψ_{i}	q-1	-1	
θj	q+1	1	
η	(q-1)/2	$(-1\pm\sqrt{arepsilon q})/2$	
η2	(q-1)/2	$(-1\mp\sqrt{\epsilon q})/2$	
ξ1	(q+1)/2	$(-1\pm\sqrt{arepsilon q})/2$	
ξ2	(q+1)/2	$(-1 \mp \sqrt{\varepsilon q})/2$	

where $\mathcal{E} = (-1)^{(q-1)/2}$, $1 \le i \le (q-1)/2$ and $1 \le j \le (q-3)/2$. Note that $\eta_1(h) + \eta_2(h) = -1$ and $\xi_1(h) + \xi_2(h) = 1$ for all $1 \ne h \in H$.

Table (2.2): The values of characters of SL(2,q) on elements of H when a is even

elements of H when q is even.			
	1	h	
1	1	1	
ρ	q	0	
Ψ_{i}	q-1	-1	
θյ	q+1	1	
where $1 \le i \le q/2$ and $1 \le j \le (q-2)/2$.			

Lemma (2.3) [3] :

Let χ be an irreducible character of a group G and suppose $p \not\mid (|G| / \chi(1))$ for some prime p. Then $\chi(g) = 0$ whenever $p \setminus o(g)$. In particular if G has a Sylow subgroup H and an irreducible character χ such that $|H| = \chi(1)$, then χ_H is the regular character of H and so $\langle \chi_H, \varphi \rangle = 1$ for each linear character φ of H.

Theorem (2.4) :

Let G = SL(2,q) for $q = p^k \ge 4$ and H be a Sylow p-subgroup of G. Then for all characters χ of G, H is a χ -subgroup.

Proof:

By lemma(2.3)the character ρ_H of degree q is the regular character of H.

Since H is abelian, all irreducible characters $\varphi_1 = 1$, φ_2 ,..., φ_q of H are linear. On the other hand $\psi_j(h) = -1$ and $\theta_i(h) = 1$ for all $1 \neq h \in H$ so $(\psi_j)_H = \rho_H - 1$ and $(\theta_i)_H = \rho_H + 1$.

Also when q is odd we have $\eta_1(h) + \eta_2(h) = -1$ and $\xi_1(h) + \xi_2(h) = 1 \text{ for all } 1 \neq h \in H \text{ so } (\eta_1)_H + (\eta_2)_H = \rho_{H^-} 1 \text{ and } (\xi_1)_H + (\xi_2)_H = \rho_{H^+} 1 \text{ .}$

Now since
$$\rho_H = \sum_{i=1}^{q} \varphi_i$$
 and $q \ge 4$, therefore the

restriction of each irreducible

character of G to H has at least one linear constituent with multiplicity 1.

3. THE χ -SUBGROUP OF SL(3,q)

Let G=SL(3,q), where $q=p^k$ for some prime p. In this section we shall show that for each irreducible character χ of G either a sylow subgroup H or a psubgroup of order q^2 of G is a χ -subgroup.

The character tables of G are known by the work [6], we shall use those tables to get the values of characters on the different conjugacy classes of G which contain the elements of the Sylow subgroup H defined below .

Define
$$H = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{pmatrix} : a, b, c \in F_q \right\}; F_q \text{ is a}$$

field with q elements.

Then the order of H is q^3 and H is a Sylow p-subgroup for G .

Now we found the following table in [6] that shows the structure of

conjugacy classes of G which contain some elementsof the Sylowp-subgroup H ,where d = gcd (3,q-1) , $\mathcal{E} \in GF(q)$ and ω is a cube root of unity.

Table (3.1): Conjugacy classes of SL(3,q) which contain elements of the Sylow p-subgroup H for d = 1, 3.

Conjugacy class	Canonical representative	Parameters
$C_{1}^{(k)}$	$\begin{pmatrix} \boldsymbol{\omega}^k & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\omega}^k & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\omega}^k \end{pmatrix}$	$o \le k \le (d-1)$
$C_{2}^{(k)}$	$egin{pmatrix} \omega^k & 0 & 0 \ 1 & \omega^k & 0 \ 0 & 0 & \omega^k \end{pmatrix}$	$o \le k \le (d-1)$
$C_{3}^{(k,I)}$	$\begin{pmatrix} \boldsymbol{\omega}^k & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{\varepsilon}^I & \boldsymbol{\omega}^k & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\varepsilon}^I & \boldsymbol{\omega}^k \end{pmatrix}$	$o \le k, I \le (d-1)$

Note that each element of H is contained in one of the conjugacy classes $C_1^{(0)}, C_2^{(0)}$ and $C_3^{(0,I)}$ of G.

The centre $Z(H) = \begin{cases} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ z & 0 & 1 \end{pmatrix} : z \in F_q \end{cases}$ is an

elementary abelian p-group of order q.

Using the canonical representative elements of conjugacy classes $C_1^{(0)}, C_2^{(0)}$ and $C_3^{(0,I)}$ we see that the minimal polynomials of elements of these conjugacy classes have degrees 1,2 and 3, respectively and the minimal polynomials of nontrivial elements of Z(H) have degree 2 so nontrivial elements of Z(H) are

contained in the conjugacy class $C_2^{(0)}$.

Now we can see the following lemma in [4] which gives us some properties of H.

Lemma (3.2) :

Suppose G=SL(3,q) where q is a power of the prime p. If H is a Sylow p-subgroup of G then we have:

1. H has q^2+q -1 conjugacy classes.

2. H has q^2 linear characters and q-1 non-linear characters of degree q such that their values on nontrivial elements of Z(H) are 1 and $q\omega^i$ for some $1 \le i \le p$ respectively, where ω is a primitive pth root of unity.

3. If τ is an irreducible character of degree q of H then $\tau(\mathbf{x}) = 0$ for $x \notin Z(H)$, and $\sum_{1 \neq z \in Z(H)} \tau(z) = -q$.

Now we can see the following table in [5] which shows the values of the restriction of the irreducible characters of group SL(3,q) on the elements of Sylow subgroup H when d=1. Since d = 1, I = 0.

Table (3.3): Values of characters of SL(3,q) on elements of	
H when $d = 1$	

	$C_1^{(0)}$	$C_2^{(0)}$	$C_3^{(0,0)}$
1	1	1	1
ψ	$q^2 + q$	q	0
ρ	q ³	0	0
ζ_i	$q^2 + q + 1$	q +1	1
ηj	$q^3 + q^2 + q$	q	0
Er	$\begin{array}{c} q^3+2q^2+\\ 2q{+1} \end{array}$	2q +1	1
μs	q ³ -1	-1	-1
Vt	q ³ - q ² - q +1	1-q	1

where $1 \le i$, $j \le q-2$, $1 \le r \le (q^2+5q+6)/6$, $1 \le s \le (q^2 - 1)/6$ q)/2 and $1 \le t \le (q^2+q)/3$.

Lemma (3.4) :

Let G = SL(3,q) where q > 2 is a power of the prime p and let H

be the Sylow p-subgroup of G and ψ be the irreducible character of degree $q^2 + q$ of G. Then

1. $\langle \psi_H, 1 \rangle = 2$.

2. $\langle \psi_H, \tau \rangle = 1$ for each irreducible character τ of degree q of H.

3. There exist some non-principal linear characters φ and ϕ of H such that $\langle \psi_H, \varphi \rangle = 0$ and $\langle \psi_H, \phi \rangle = 1$.

Proof : Suppose that

$$\mathbf{x} = \begin{pmatrix} 1 & 0 & 0\\ a & 1 & 0\\ b & c & 1 \end{pmatrix} \in H$$

is contained in the conjugacy class $C_2^{(0)}$ of G. Since each element in $C_2^{(0)}$ has a minimal polynomial of degree 2,

$$(\mathbf{x}-1)^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ ac & 0 & 0 \end{pmatrix} = 0$$

This, together with $x \notin Z(H)$ implies a = 0 or c = 0 but not both. Therefore the number of possibilities for the elements x with above properties is 2q(q-1). The elements of Z(H) are also contained in $C_2^{(0)}$ and the values of ψ on $C_1^{(0)}$, $C_2^{(0)}$ and $C_3^{(0,0)}$ are $q^2 + q$, q and 0, respectively. Thus we have

$$\langle \psi_H, \mathbf{l} \rangle = \frac{1}{|H|} \sum_{x \in H} \psi_H(x) \mathbf{l}(x) = \frac{1}{q^3} (\psi_H(1) + \sum_{1 \neq z \in Z(H)} \psi_H(z) + \sum_{z \notin Z(H)} \psi_H(z))$$

$$\cdots \cdots = \frac{1}{q^3} ((q^2 + q) + (q - 1)q + 2q(q - 1)q) = 2.$$

Now suppose τ is an irreducible character of degree q of H. By using table(3.3) for the value of ψ on the conjugacy class $C_2^{(0)}$ of G which contains the elements of Z(H), by lemma (3.2) we have

$$\langle \psi_H, \tau \rangle = \frac{1}{|H|} \sum_{x \in H} \psi_H(x) \overline{\tau(x)}$$

$$\cdots \cdots = \frac{1}{q^3} (\psi_H(1)\tau(1) + \sum_{|x| \in Z(H)} \psi_H(z) \overline{\tau(z)} + \sum_{z \notin Z(H)} \psi_H(z) \overline{\tau(z)})$$

$$\cdots \cdots = \frac{1}{q^3} ((q^2 + q)q - q^2 + 0) = 1.$$

Therefore for each irreducible character τ of degree q of H $\langle \psi_H, \tau \rangle = 1$ as claimed.

Now since $\langle \psi_H, \tau \rangle = 1$ for each irreducible character τ of degree q of H , hence $\psi_H = \sum_{i=1}^{q-1} \tau_i + \sum_{j=1}^{t} m_j \phi_j$

where ϕ_i are linear characters of H with multiplicity

m_j. Since
$$\psi(1) = q^2 + q$$
 and $\sum_{i=1}^{q-1} \tau_i(1) = q^2 - q$ we

have $\sum_{j=1}^{t} m_j \phi_j(1) = 2q$. Since H possesses $q^2 - 1$ non-

principal linear characters, there exists at least one non-principal linear character φ such that $\langle \psi_H, \varphi \rangle = 0$.Put $\langle \psi_H, 1 \rangle = m$. Since $(\upsilon_t)_H = \chi_H - \psi_H + 1$ we have $\langle (\upsilon_t)_H, 1 \rangle = 2 - m$. Hence

m
$$\leq 2$$
 and so $\sum_{j=1}^{\gamma} m_j \phi_j(1) \geq 2q - 2$ where \sum runs

over $\phi_i \neq 1$. This means

there exists some non-principal linear character ϕ of H such that $\langle \psi_H, \phi \rangle \neq 0$. If we suppose $\langle \psi_H, \phi \rangle = n$, then $\langle (\upsilon_t)_H, \phi \rangle = 1 - n$. Since $n \neq 0$ this shows that n = 1.Therefore there exists a non-principal linear character ϕ such that $\langle \psi_H, \phi \rangle = 1$.

Theorem (3.5) :

Let G = SL(3,q) where q > 2 is a power of prime p and d = 1 and let H be a sylow p-subgroup of G. Then for all irreducible characters χ of G, H is a χ subgroup.

Proof:

By table (3.3) the characters ρ and ψ have degrees q^3 and q^2+q respectively.

Now if we restrict them to H we see that for all nontrivial $x \in H$ we have $\rho_H(x) = 0$ and $\psi_H(x) = q$ or 0. Thus from the values of the other characters of G on H we get:

$$(\zeta_i)_H = \psi_H + 1, \ (\eta_j)_H = \rho_H + \psi_H,$$

 $(\varepsilon_r)_H = \rho_H + 2\psi_H + 1, \ (\mu_s)_H = \rho_H - 1, \text{ and}$
 $(\upsilon_t)_H = \rho_H - \psi_H + 1.$

Since $\rho(1) = q^3$ is the order of H, Lemma (2.3) shows that ρ_H is the regular character of H and $\rho_H = \sum_{\nu \in Irr(H)} \nu(1)\nu$. On the other hand by the lemma (3.4) there exists a non-principal linear character φ of H such that $\langle \psi_H, \varphi \rangle = 0$ then, since $\langle \rho_H, \varphi \rangle = 1$, we have $\langle \rho_H + \psi_H, \varphi \rangle = 1$, $\langle \rho_H + 2\psi_H + 1, \varphi \rangle = 1$,

$$\langle \rho_H - 1, \varphi \rangle = 1$$
 and $\langle \rho_H - \psi_H + 1, \varphi \rangle = 1$.

Also by the lemma (2.3) there exists a non-principal linear character ϕ of H such that $\langle \psi_H, \phi \rangle = 1$. Thus $\langle \psi_H + 1, \phi \rangle = 1$, and H is a χ -subgroup.

Now we consider the case that d=3. The following table in [6] show of the values of irreducible characters of SL(3, q) on the conjugacy classes which contain the elements of H.

Table (3.6): Values of characters of SL(3,q) on elementsof H when d = 3

	$C_{1}^{(0)}$	$C_2^{(0)}$	$C_3^{(0,0)}$
1	1	1	1
Ψ	$q^2 + q$	q	0
ρ	q^3	0	0
ζi	$q^2 + q + 1$	q +1	1

η _j	$q^{3} + q^{2} + q$	q	0
θĸ	$(q^3 + 2q^2)$	(2q +1)/3 or	(2q + 1)/3
	+2q+1)/3	(1-q)/3	or (1-q)/3
Er	$q^3 + 2q^2 +$	2q +1	1
	2q+1		
μs	q ³ -1	-1	-1
Vt	q ³ - q ² - q +1	1-q	1
ωm	(q ³ - q ² - q	(1-q)/3 or (2q	(1-q)/3 or
	+1)/3	+1)/3	(2q + 1)/3
γn	(q ³ - q ² - q	(1-q)/3 or (2q	(1-q)/3 or
	+1)/3	+1)/3	(2q + 1)/3

where $1\leq i$, j $\leq q$ -2 , $1\leq r\leq (q^2+5q+4)/6$, $1\leq s\leq (q^2-q)/2$, $1\leq t\leq (q^2+q-2)/3$ and $1\leq k,$ m, $n\leq 3.$

By the values of characters $\omega_{\rm m}$ and $\gamma_{\rm n}$ on the conjugacy classes $C_1^{(0)}$, $C_2^{(0)}$ and $C_3^{(0,I)}$ we have

$$\{(\omega_1)_H, (\omega_2)_H, (\omega_3)_H\} = \{(\gamma_1)_H, (\gamma_2)_H, (\gamma_3)_H\}.$$

Definition (3.7) :

Let H be a normal subgroup of group G and α and β be characters

of H. Then β is called **a conjugate** of α in G if there exists $g \in G$ such that $\beta = \alpha^{g}$, where

$$\alpha^{g}(h) = \alpha(ghg^{-1}) = \alpha(h^{g^{-1}})$$
 for $h \in H$.

Theorem (3.8) [6] :

Let G = GL(3,q) then the elements of each set of characters $\{\theta_1, \theta_2, \theta_3\}, \{\omega_1, \omega_2, \omega_3\}$ and

 $\{\gamma_1, \gamma_2, \gamma_3\}$ of SL(3,q) are conjugate in G.

Lemma (3.9) :

Let H be a subgroup of G, $x \in N_G(H)$ and \mathscr{G} be a character of H. Then \mathscr{G}^x is a character of H and $\mathscr{G}^x(1) = \mathscr{G}(1)$. Furthermore $\langle \mathscr{G}^x, \mathscr{G}^x \rangle = \langle \mathscr{G}, \mathscr{G} \rangle$ and in particular \mathscr{G}^x is irreducible if and only if \mathscr{G} is irreducible.

Proof:

Since $x \in N_G(H)$ so $xhx^{-1} \in H$ for $h \in H$. On the other hand by definition (3.7)

 $\mathcal{G}^{x}(h) = \mathcal{G}(xhx^{-1}) = \mathcal{G}(h^{x^{-1}})$ so \mathcal{G}^{x} is a character of H. Also

$$\mathcal{G}^{x}(1) = \mathcal{G}(xx^{-1}) = \mathcal{G}(1).$$

$$\langle \mathcal{G}^{x}, \mathcal{G}^{x} \rangle = \frac{1}{|H|} \sum_{h \in H} \mathcal{G}^{x}(h) \overline{\mathcal{G}^{x}(h)} = \frac{1}{|H|} \sum_{h \in H} \mathcal{G}^{x}(h^{x^{-1}}) \overline{\mathcal{G}}(h^{x^{-1}})$$
$$\dots = \frac{1}{|H|} \sum_{z=h^{x^{-1}} \in H} \mathcal{G}(z) \overline{\mathcal{G}(z)} = \langle \mathcal{G}, \mathcal{G} \rangle.$$

Therefore $\mathscr{G}^{x} \in Irr(H)$ if and only if $\mathscr{G} \in Irr(H)$.

Lemma (3.10) :

Let G be a normal subgroup of group L and H be a Sylow subgroup

of G. Let χ and \mathscr{G} be irreducible characters of G and H, respectively. Let $I \in L$ then

$$\langle \chi_H, \vartheta \rangle = \langle \chi_H^I, \vartheta^x \rangle$$
 for some $x \in N_L(H)$.

In particular $\langle \chi_H, 1 \rangle = \langle \chi_H^I, 1 \rangle$.

<u>Proof:</u>

By the Frattini argument lemma (1.6) shows $L = GN_L(H)$. If $I \in L$ then

l = gx where $g \in G$ and $x \in N_L(H)$. Thus

$$\langle \chi_H, \mathcal{G} \rangle = \frac{1}{|H|} \sum_{h \in H} \chi_H(h) \mathcal{G}(h) = \frac{1}{|H|} \sum_{h \in H} \chi_H(h^{x^{-1}}) \mathcal{G}(h^{x^{-1}})$$

$$\dots \dots = \frac{1}{|H|} \sum_{h \in H^x = H} \chi_H^x(h) \mathcal{G}^x(h) = \langle \chi_H^x, \mathcal{G}^x \rangle.$$

Since $\chi \in Irr(G)$ so $\chi^g = \chi$ thus $\chi^I_H = \chi^{g_X}_H = \chi^x_H$ and this implies $\langle \chi_H, \mathcal{G} \rangle = \langle \chi^I_H, \mathcal{G}^x \rangle$.

In particular if $\vartheta = 1$ then since $\mathbf{1}^{x} = \mathbf{1}$ so

$$\langle \chi_H, 1 \rangle = \langle \chi_H^I, 1 \rangle$$

<u>Theorem (3.11) :</u>

Let G = SL(3,q) where q > 2 is a power of the prime p and d = 3.

Let H be a Sylow p-subgroup of G. If χ is an irreducible character of G then H is a χ -subgroup.

Proof:

We use the same method as we used to prove theorem (3.5) .Thus ρ_H is the regular character of H and ψ_H is the character of degree q^2+q of H. Therefore for characters ζ_i , η_j , ϵ_r , μ_s and ν_t we have:

$$(\zeta_i)_H = \psi_H + 1, \ (\eta_j)_H = \rho_H + \psi_H,$$

$$(\varepsilon_r)_H = \rho_H + 2\psi_H + 1, \ (\mu_s)_H = \rho_H - 1, \text{ and}$$

 $(\upsilon_t)_H = \rho_H - \psi_H + 1.$

Lemma (3.4) shows H has some non-principal linear characters φ and ϕ such that $\langle \psi_H, \varphi \rangle = 0$ and

$$\langle \psi_H, \phi \rangle = 1$$
. Since ρ_H is the regular character of H so
 $\langle \rho_H, \phi \rangle = \langle \rho_H, \phi \rangle = 1$. Hence
 $\langle (\eta_j)_H, \phi \rangle = \langle (\varepsilon_r)_H, \phi \rangle = \langle (\mu_s)_H, \phi \rangle = \langle (\upsilon_t)_H, \phi \rangle = 1$

and $\langle (\zeta_i)_H, \phi \rangle = 0$. Also $\langle \psi_H, \phi \rangle = 1$ implies $\langle (\zeta_i)_H, \phi \rangle = 1$. Therefore the restriction of characters $\zeta_i, \eta_j, \varepsilon_r, \mu_s$ and v_t on H have at least one linear constituent with multiplicity one. So the only remaining characters to consider are θ_k , ω_m and γ_n for $1 \le k,m,n \le 3$.

Using the Frobenius reciprocity we have,

$$\langle \eta_j, \varphi^G \rangle = \langle \mathcal{E}_r, \varphi^G \rangle = \langle \mu_s, \varphi^G \rangle = \langle \upsilon_t, \varphi^G \rangle = 1 \text{ and}$$

$$\langle \zeta_i, \varphi^G \rangle = 0. \text{ Also if}$$

$$\langle (\theta_k)_H, \varphi \rangle = K_k, \langle (\omega_m)_H, \varphi \rangle = M_m \text{ and} \langle (\gamma_n)_H, \varphi \rangle = N_n,$$

then

$$\langle \theta_k, \varphi^G \rangle = K_k, \langle \omega_m, \varphi^G \rangle = M_m \quad and \langle \gamma_n, \varphi^G \rangle = N_n, \text{ for } 1$$

 \leq k, m, n \leq 3. Therefore if we induce φ to G we get

$$\begin{split} \varphi^{G} &= \rho + (q-2) \ \eta_{j} + ((q^{2} - 5q + 4)/6)\varepsilon_{r} + ((q^{2} - q)/2)\mu_{s} + ((q^{2} + q - 2)/3)\upsilon_{t} \\ &+ \sum_{k=1}^{3} K_{k}\theta_{k} + \sum_{m=1}^{3} M_{m}\omega_{m} + \sum_{n=1}^{3} N_{n}\gamma_{n}. \end{split}$$

Using the fact that $\varphi^{G}(1) = |G : H| \varphi(1)$ we calculate the value at 1 and simplify the above equation we have

$$|G:H| = -q^{2} - q^{3} + q^{5} + \sum_{k=1}^{3} K_{k} \theta_{k}(1) + \sum_{m=1}^{3} M_{m} \omega_{m}(1) + \sum_{n=1}^{3} N_{n} \gamma_{n}(1).$$

Since $|G:H| = q^{5} - q^{3} - q^{2} + 1$ we get

$$\sum_{k=1}^{3} K_k \theta_k(1) + \sum_{m=1}^{3} M_m \omega_m(1) + \sum_{n=1}^{3} N_n \gamma_n(1) = q^3 + 1.$$

Since

 $\theta_k (1) = (q^3 + 2q^2 + 2q + 1)/3$ and $\omega_m(1) = \gamma_n(1) = (q^3 - q^2 - q + 1)/3$

so we have

$$(\sum_{k=1}^{3} K_{k})((q^{3} + 2q^{2} + 2q + 1)/3) + (\sum_{m=1}^{3} M_{m} + \sum_{n=1}^{3} N_{n})((q^{3} - q^{2} - q + 1)/3) = q^{3} + 1.$$

Hence by considering $K = \sum_{k=1}^{3} K_k, M = \sum_{m=1}^{3} M_m$

and $N = \sum_{n=1}^{3} N_n$

We get

K $((q^3 + 2q^2 + 2q + 1)/3) + (M + N)((q^3 - q^2 - q + 1)/3) = q^3 + 1$ So

 $(K{+}M{+}N) \; q3{+}(2K{-}(M{+}N)) \; q^2{+}((2K{-}(M{+}N)) \\ q{+}(K{+}M{+}N) = 3(q^3{+}1) \; .$ Thus

 $(A - 3)(q^3 + 1) = -B(q^2 + q)$ (*)

where A = K+M+N and B = 2K-(M+N). Since K, M and N are non negative integers and are not all equal 0, so A is a positive integer. Since

 $q \setminus -B(q2 + q)$ so $q \setminus A-3$ and this means that A-3 = tq for some integer t. Hence simplifying equation (*) implies $-B = t(q^2 - q + 1)$. Thus

$$0 \le 3K = A + B = 3 - t(q - 1)^2$$

Since d = gcd(3, q-1) = 3 so we can consider q > 3, which in this case

A = 3 + tq > 0 implies $t \ge 0$ and $A + B = 3 - t(q-1)^2 \ge 0$ shows $t \le 0$.

Thus t = 0, A = 3 and B = 0 which these conclude K = 1 and M + N = 2.

Therefore
$$\sum_{k=1}^{3} K_k = 1$$
 and $(\sum_{m=1}^{3} M_m + \sum_{n=1}^{3} N_n) = 2$. So

for some k, $K_k = 1$ and

 $\langle (\theta_k)_H, \varphi \rangle = 1$.Let $\langle (\theta_1)_H, \varphi \rangle = 1$ then by theorem (3.8) the characters θ_1, θ_2 and θ_3 are conjugate in L = GL(3,q) .Hence by lemma(3.10) we have

$$\langle (\theta_1)_H, \varphi \rangle = \langle (\theta_2)_H, \varphi^x \rangle = \langle (\theta_3)_H, \varphi^y \rangle = 1$$
 for

some x , $y \! \in \! N_L(H).$

On the other hand by lemma(3.9), ϕ^x and ϕ^y are linear characters of H so the restriction of characters θ_1 , θ_2 and θ_3 to H have at least a constituent of degree one with multiplicity one. Also by table (3.6),

$$\{(\omega_1)_H, (\omega_2)_H, (\omega_3)_H\} = \{(\gamma_1)_H, (\gamma_2)_H, (\gamma_3)_H\}$$

so $\sum_{m=1}^3 M_m = 1$ and $\sum_{n=1}^3 N_n = 1$. Therefore for some m
and n we have $N_n = 1$ and $M_m = 1$ which this means
 $\langle (\omega_n) = - \langle (\gamma_n) = - \langle (\gamma_n) \rangle = -1$. Now we can suppose

 $\langle (\omega_m)_H, \varphi \rangle = \langle (\gamma_n)_H, \varphi \rangle = 1$. Now we can suppose $\langle (\omega_1)_H, \varphi \rangle = \langle (\gamma_1)_H, \varphi \rangle = 1$. Theorem (3.8) shows the elements of each set of characters { $\omega_1, \omega_2, \omega_3$ }

and $\{\gamma_1, \gamma_2, \gamma_3\}$ are conjugate in L= GL(3, q).

Therefore by lemma (3.9) and lemma (3.10) there exist r, s, t, $u \in N_L(G)$ such that $\varphi^r, \varphi^s, \varphi^t and \varphi^u$ are linear characters of H and

 $\langle (\omega_2)_H, \varphi^r \rangle = \langle (\omega_3)_H, \varphi^s \rangle = \langle (\gamma_2)_H, \varphi^r \rangle = \langle (\gamma_3)_H, \varphi^u \rangle = 1$ Hence for $1 \le m, n \le 3$ the characters $(\omega_m)_H$ and $(\gamma_n)_H$ have a linear constituent with multiplicity 1. This completes the proof.

REFERENCES

- J.D. Dixon, Constructing representations of finite groups, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 11, Amer. Math. Soc., Providence, RI(1998), 105-112.
- 2- L. Dornhoff, Group Representation Theory: Ordinary Representation Theory, Appl. Math. Marcel Dekker, New York, 1971.
- **3-** I.M. Isaacs, **Character Theory of Finite Groups**, Dover. New York, 1994.

- 4- G. Karpilovsky, The Schur Multiplier. London Math. Soc. Monographs. Oxford Univ., New York, 1987.
- 5- W. Plesken and B. Souvignier, Constructing representations of finite groups and applications to finitely presented groups, J. Algebra. 202 (2000),690-703.
- 6-A.W. Simpson and J.S. Frame, The character tables for SL(3,q), SU(3,q²), PSL(3, q), PSU(3, q²), Canad. J. Math. 25 (1983), 486-494.

شخوص الزمرة الجزئية للزمرة الخطية الخاصة (SL(n,q)

افراح محمد ابراهيم

الخلاصة :

في هذا البحث قمنا بايجاد χ - للزمر الجزئية لشخوص غير قابلة للتحليل χ للزمرة الخطية الخاصة SL(n,q) عندما χ عندما