
P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2011,(5), (3) :50-56

50

Effects of Parallel Processing Implementation on Balanced Load-

Division Depending on Distributed Memory Systems

Subhi R. M. Zebari* Numan O. Yaseen**

*Foundation of Technical Education/Arbil - Amedi Technical Inst.

**Amedi Education Directory.

A R T I C L E I N F O A B S T R A C T

Received: 29 / 5 /2011

Accepted: 15 / 11 /2011

Available online: 14/6/2012

DOI: 10.37652/juaps.2011.44313

 Complex problems need long time to be solved, with low efficiency and

performance. Therefore, to overcome these drawbacks, the studies went toward the

approaches of breaking the problem into independent parts, and treating each part

individually in the way that each processing element can execute its part of the

problem simultaneously with the others.Parallel processors are computer systems that

consist of multiple processing units connected via some interconnection network and

the software needed to make the processing units work together. Parallel processing

is divided into three types; Shared, Distributed and Hybrid memory systems.In this

paper, distributed memory systems addressed depending on client/servers principles,

the network can contain any number of nodes; one of them is a client and the others

are servers. The algorithms used here are capable of calculating the (Started,

Terminated, Consumed -CPU and Total Execution- times and CPU usage) of servers

and the Client's -CPU and total execution- times. This work addresses an improved

approach for problem subdivision in balanced form and design flexible algorithms to

communicate efficiently between client-side and servers-side in the way to overcome

the problems of hardware networking components and message passing problems.

We addressed Matrix-Algebra case-study to display the effect of balance load-

division for this approach. The obtained results are checked and monitored by special

programming-checking-subroutines through many testing-iterations and proved a

high degree of accuracy. All of these algorithms implemented using Java Language.

Keywords:

Parallel Processing Implementation ,

Balanced Load-Division ,

Distributed Memory Systems.

Introduction

To speed-up the execution of a program, the

program divided into multiple fragments that can be

executed simultaneously, each on its own processor.

A program be executed across n processors might

execute n times faster than it would using a single

processor [1].

A Parallel System is a combination of a parallel

algorithm and a machine on which it operates. Both

factors count with several variables. Parallel

algorithms can be specified using a wide range of

models and paradigms. Supporting architectures, even

though they all count with more than one processor,

they can be different in several dimensions, such as in

a control mechanism, address space organization,

processors granularity and interconnection

network[2].

The main argument for using Multi-Processors

(MPs) is to create powerful computers by simply

connecting multiple processors.

* Corresponding author at: Foundation of Technical
Education/Arbil - Amedi Technical Inst, Iraq.E-mail address:

subhizebari@yahoo.com

The MP is expected to reach faster than the

fastest single-processor system. In addition, the MP

consists of a number of single processors expected to

be more cost-effective than building a high-

performance single processor. Another advantage of

the MP is fault tolerance. If a processor fails, the

remaining processors should be able to provide

continued service, albeit with degraded performance

[3].

Parallel Processing

Parallel Processing (PP) is certainly not a new

concept. For decades, performance research has

focused on reducing the time it takes to execute

floating-point and other operations related to solving

numerically intensive algorithms used in such fields

as structural mechanics and fluid dynamics. There are

three distinct areas of PP: server-side functions, server

process client-side functions and client process object

rendering [4].

Uses or applications for PP come from two

different areas; on one hand, there are high

performance systems for speeding up compute-intense

mailto:subhizebari@yahoo.com

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2011,(5), (3) :50-56

51

calculations. These can be executed on traditional

supercomputer systems or on large clusters of

workstations. On the other hand, there are embedded

control systems on sequential hardware, which

requires Parallel Programming concepts to control

concurrent external actuators or internal processes. PP

is common place today under standard operating

systems such as Linux and Windows, with parallel

software design becoming more and more important

[5]. Although the use of multiple processors can

speed−up many operations, most applications cannot

yet benefit from parallel processing. Parallel

Processing is appropriate only if: (The application has

enough parallelism to make a good use of multiple

processors. In part, this is a matter of identifying

portions of the program that can execute

independently and simultaneously on separate

processors) [1].

Taxonomy of Computer Architecture

In 1996, Michael J. Flynn created one of the

earliest classification systems for parallel (and

sequential) computers and programs, now known as

Flynn's taxonomy [6]. Flynn’s classification scheme

based on the notion of a stream of information. Two

types of information flow into a processor:

instructions and data. The instruction stream defined

as the sequence of instructions performed by the

processing unit. The data stream defined as the data

traffic exchanged between the memory and the

processing unit [3]. Parallel computers are classified

along data and instruction axes data stream as bellow

[7]:

a. Single Instruction Single Data (SISD).

b. Single Instruction Multiple Data (SIMD).

c. Multiple Instruction Single Data (MISD).

d. Multiple Instruction Multiple Data (MIMD).

Parallel Programming and Implementation

One way to solve a problem fast is to break the

problem into pieces, and arrange for all the pieces to

be solved simultaneously. The more pieces, the faster

the job goes-up to a point where the pieces become

too small to make the effort of breaking-up and

distributing worth the bother. These simple, obvious

observations underlie all of parallel programming. A

"parallel program" is a program that uses the

breaking-up and handing-out approach to solve large

or difficult problems [8]. Parallel programs are

intended for execution on many processors

simultaneously. Each processor works on one piece of

the problem, and they all proceed together. In the best

case, n processors focused on a single problem will

solve it n times faster than any single processor [8].

Parallel programming is a viable method for

solving computationally intensive problems in various

fields. In electrical engineering, for instance, solving

power systems network equations is an area where

parallel algorithms are being developed and applied.

A popular approach to implementing parallel

algorithms is to employ a cluster or a network of

parallel computers. With the advances made in

computer hardware and software, it is now quite a

simple matter to configure a computer network and

program it to solve problems cooperatively. The

parallel software simulation is interesting application

that has been implemented on a computer cluster. The

common programming paradigm for this type of

parallel algorithm is either multiple program multiple

data or single program multiple data [9]. Because of

the importance of improving the performance and the

quality of the solutions, researchers have proposed

different approaches to parallelize multi-objective

evolutionary algorithms [10].

Client/Server Principles

Client/server computing enables the use of low-

cost hardware and software, increases local autonomy

and ownership of data, and offers better performance

and higher availability. It is used to build many

different types of application, from corporate

distributed online transaction processing and data

warehousing applications, to departmental and

groupware systems. These applications often involve

a wide range of different hardware and software;

powerful machines, departmental servers, desktop

systems, or even network computers. Some people

argue that the advent of Internet/Intranet and Web

technology signal the demise of client/server, but

closer examination shows that this technology is just

another form of client/server computing. In fact, many

organizations are interested in connecting new Web-

based applications to existing client/server systems.

Client/server, therefore, is likely to be with us for

some time to come, and will be used for developing

an ever-increasing set of complex and interconnected

applications [11].

Early implementers of client/server applications

focused primarily on fast application development,

and on the cost savings provided by the use of cheaper

hardware and software. The first client/server systems

paid little attention to good architecture design,

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2011,(5), (3) :50-56

52

systems management, or even performance.

Experience has shown that designers and developers

ignore these issues at their peril [11]. In a document-

partitioned index, each index server is responsible for

a subset of the documents in the collection. Each

incoming user query is received by a front-end server,

the receptionist, which forwards it to all n index

nodes, waits for them to process the query, merges the

search results received from the index nodes, and

sends the final list of results to the user [12].

The System-Structure and Proposed Algorithms

In a distributed memory system, each process

has its own address space and communicates with

other processes by message-passing (sending and

receiving messages). Each processor has its own local

memory; the processors connected to each other. In

distributed memory system, there is no limitation on

number of processors and memory modules because

the servers are connected as cluster-network, which

can be extended to any required number.

In this work, number of servers in the cluster-

network is 16-servers of identical properties. The

proposed algorithms have two main parts; the first one

relates to hardware of the work, and the second is

about the software that guides these hardware

components and manages the passing of messages

between client-side and servers-side.

Hardware Part

The hardware part constructed of client-side

and servers-side, this network is designed according to

star topology. In such works, the properties of

computers are important; either these properties will

be deferent from one computer to another, or they will

be the same, which means having identical-computers.

In fact, for more accurate-results with acceptable

comparisons, it is preferable to depend on identical-

computers. Therefore, in this work all computers for

both sides are identical completely, which have the

following properties: (CPU: Core 2 Due, Speed: 2.6

MHz, RAM: 2 GB, and HD: 120 GB).

Client-side has only one host, which controls

the sending of message passing operations to other

side. Client-host contains the main program that can

treat with all server-hosts individually, subgroups, or

all of them. The secondary storage of the client-host

stores the original data related with the addressed case

study that must be send to other side, also stores the

receiving results calculated by the servers-side.

Servers-side consists of sixteen hosts connected

in the way to get a cluster of 16-sockets. Each socket

contains a program constructed from many sub-

programs and functions that have the ability of

receiving data, making the required processing,

calculating the results, and then returning them to the

client-side. Servers-side can stores the received data

and the determined results on their secondary

storages, or returns them directly to client-side.

Software Part

As the hardware part consists of two sides, the

software part also consists of two sides, which are

client-side-software and servers-side-software.

Client-side-software represents the main-

program, which is responsible of the following tasks:

1. Detecting number of connected server-sockets at

other side.

2. Deciding how many server-sockets will receive

the messages from the client.

3. Sending control-messages to server-sockets.

4. Sending related data (as message-text or as data-

files) to server-sockets.

5. Monitoring all related server-sockets in case if

they send any results or any query-messages.

6. Responding the query-messages received from

servers-side.

7. Receiving the calculated results by server-sockets

and accumulating them to get the final results.

8. Making sure that all sending or receiving

messages and data are stored on the client-side

secondary-storage.

Servers-side-software represents the programs

that service the commands issued from the main

program (i.e. client program). The software at each

server-host is responsible of the following tasks:

1. Detecting the connection status of the client-host.

2. Deciding which sockets to work according to

number of server-sockets sent by the client, taking

into consideration that may be several of these

server-sockets be out of work for certain numbers

of server-sockets, for example; if number of

server-sockets is 2, then only servers (1 & 2) will

work and the servers (3 to 16) will be out of work.

3. Receiving the control-messages from client-host

and guide the execution of the server-program to

apply the client-requirements.

4. Receiving the related data (as message-text or as

data-files) from client-host.

5. Monitoring client-host in case if it sends any

immediate command, message, or data.

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2011,(5), (3) :50-56

53

6. Run the appropriate-subroutines according to the

requirements of client-host and calculate the

correct results, knowing that each server will treat

with that part of data that selected for it by the

client-host.

7. Sending the calculated results to client-host,

knowing that these results will be arranged in a

form to be managed and assembled by the client-

host in a suitable manner.

8. Each server-program contains all subroutines of

the same case study. This gives the server-program

the ability of treating with any selected part of data

and chose the appropriate subroutine to calculate

the required results.

Messages Transferred Between Client-side and

Servers-side

There are two types of messages related to this

approach of PP which are (control-messages and data-

messages).

Control Messages:

Control messages issued by client-host and sent

to server-sockets. These messages control the

management of the processing overall the network

and monitor the performance of the hosts especially

server-hosts. This work uses the following control

messages:

1. Connection status of each server-socket, either it is

ready or not.

2. Selecting number of server-sockets to participate in

the task.

3. Selecting and/or deselecting any server-socket to

be ready for communication with client-side.

4. Sending the starting-signal and/or termination-

signal for any selected server-socket.

Data Messages:

Data messages; issued by client-side and/or

servers-side. These messages carry specific data,

which help running processes at server-sockets if the

messages are issued by client-host. Also, may be

representing specific results if the messages issued by

server-sockets. This work uses the following data

messages:

1. Starting task time (issued by client).

2. Starting CPU time (issued by each server).

3. Size of data-arrays that must be generated by

client then used by servers).

4. Names of files containing these data-arrays used

by both client-side and servers-side.

5. Starting running time (issued by each server).

6. Size of data-arrays that must be generated by

servers after processing and used by client later for

rearrangement.

7. Names of files containing these data-arrays to be

used by both client-side and servers-side.

8. Terminating CPU time (issued by each server).

9. Consumed CPU time (issued each server).

10. Consumed running time (calculated by each

server).

11. CPU usage percentage ratio (calculated by each

server).

Matrix Algebra Case-Study

Matrix algebra is the famous type case-study

related to PP. However, in this work, there are sixteen

servers used and it can be N-servers according to the

capacity of the laboratory of these experiments as

shown in Figure (1).

Figure (1): Cases of Matrix Algebra Algorithm. (a) One-

server. (b) two-servers. (c) four-servers. (d) eight-servers.

(e) sixteen-servers. Number of servers=2m, where m= {0, 1,

2, 3 and 4}

The algorithm is designed to treat with two

original matrices of square order (4096, 4096) as

maximum depending on the host's RAM. This means

that each matrix will contains (16,777,216) elements.

Therefore, there will be (33,554,432) elements

divided into sub parts (sub-matrices) to perform the

(Addition, Subtraction and Multiplication) operations

using (one, two, four, eight and sixteen) server-

sockets. Figure (2) represents a sample of load-

division among 16-servers in balance form.

Figure (2): Sample of load-division representation among

16-servers for Matrix Algebra Algorithm Case-Study

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2011,(5), (3) :50-56

54

Results and Discussion

The obtained results are stored in tables and

plotted as shown in Figures (3 to 13). The results are

divided into two main groups; first one is related with

the average values of timing and usages for servers-

side which are represents the average of related times

or usages for all servers as an acceptable value to be

depended, these values are plotted as shown in

Figures (3, 4, 5, 8, 9 and 10), Figure (11) represents

the average of CPU-Usage for all servers and for all

sets of elements. The second group of the results is an

additional assessment of performance of this work in

the view of the latest returning results by the servers-

side which is named here as Maximum-Values. These

results are shown in Figures (6, 7, 12 and 13).

The results that represent the three subsets of

matrix orders {(64, 128, 256), (512, 1024) and (2048,

4096)} are plotted in three separated Figures which

are (3, 4 and 5) respectively, this arrangement is

dependent because of the high-gap of obtained-results

among these sub-sets which cannot be cleared in one

figure, these results are very acceptable.

The results of Figures (6 and 7) represent the

maximum consumed CPU time also are very

acceptable, in this case the results of orders less than

(512) which are small-loads are ignored because of

the instability of decreasing the time with the

increasing number of servers. This is applied also on

the results of Figures (12 and 13) that related with

maximum total execution-time of the program.

Results of Figures (8 to 10) represent total

execution-time of matrix-algebra operations which are

very acceptable.

Figure (11) illustrates the average CPU-usage

of all servers with all tested sets of matrix-orders; it

represents the relationship between CPU-usage and

number of servers to determine the Average CPU-

usage according to all cases of matrix-orders. It is

clear that CPU-usage is increasing with increasing of

the load for the same number of used-servers. It is

expected that for each certain number used servers,

the value of CPU usage will increase by increasing the

load. This is clear with the cases of high-number of

servers (i.e. > 2 servers), but for (≤ 2 servers) the

average of CPU-usage is unstable and may be the

changing is independent on this manner because the

value of CPU-usage is affected by any instance under-

running tasks depending on the computer status, also

may be the nature of the data that under-processing

effects on the value of CPU-usage.

Conclusions

The main points arise from the research

employed in this paper can be summarized by the

following:

1. Distributed memory systems addressed depending

on client/servers principles with a network consists

of seventeen nodes one of them is a client and the

others are servers.

2. The algorithms used here are capable of

calculating: the (Started, Consumed, and

Terminated) times for (CPU and total execution),

CPU usage of servers, and (CPU and total

execution) times for the Client.

3. The algorithms are designed in very active

programming-routines to get minimum loss of

spend-time through the running state (at both

Client and Servers sides).

4. Matrix Algebra Case-study is addressed, and there

are many general algorithms and other related

algorithms. All these algorithms are designed and

tested completely by this work.

5. The obtained results are checked and monitored by

special programming-checking-subroutines

through many testing-iterations and proved a high

degree of accuracy.

6. The results showed that parallel-processing

operations are ineffective and inefficient with

small load applications, and this efficiency is

growing with increasing the task load. So, the

highest load task will be implemented in high

efficiency and the lowest load task implemented

with low efficiency, taking in the consideration

number of servers used.

7. All depended algorithms in this work are built in

NetBean-Java Language.

Figure (3): Average Consumed CPU Time for Matrix-

Algebra of (64, 128 and 256 Orders)

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2011,(5), (3) :50-56

55

Figure (4): Average Consumed CPU Time for Matrix-

Algebra of (512, and 1024 Orders).

Figure (5): Average Consumed CPU Time for Matrix-

Algebra of (2048, and 4096 Orders).

Figure (6): Maximum Consumed CPU Time for Matrix-

Algebra of (512, and 1024 Orders)

Figure (7): Maximum Consumed CPU Time for Matrix-

Algebra of (2048, and 4096 Orders)

Figure (8): Average Total Execution Time for Matrix-

Algebra of (64, 128, and 256 Orders)

Figure (9): Average Total Execution Time for Matrix-

Algebra of (512 and 1024 Orders)

Figure (10): Average Total Execution Time for Matrix-

Algebra o f (2048 and 4096 Orders)

Figure (11): Maximum Total Execution Time for Matrix-

Algebra of (512 and 1024 Orders)

Figure (12): Maximum Total Execution Time for Matrix-

Algebra o f (2048 and 4096 Orders)

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2011,(5), (3) :50-56

56

Figure (13): Average CPU-Usage for Matrix-Algebra of

(64, 128, 256, 512, 2048 and 4096 Orders)

References

[1] Hank Dietz,hankd@engr.uky.edu, "Linux Parallel

Processing HOWTO", http://aggregate.org/LDP/,

v2.0, 28-06, 2004.

[2] Marcelo R. Naiouf, Parallel processing. "Dynamic

Load Balance in Sorting Algorithms", University

Nacional de La Plata, Facultad de Ciencias

Exactas, September 2004.

[3] H. El-Rewini and M. Abd-El-Barr ," Advanced

Computer Architecture and Parallel Processing",

ISBN 0-471-46740-5 John Wiley & Sons, Inc,

2005.

[4] Eitan Frachtenberg, "Job Scheduling Strategies for

Parallel Processing", JSSPP, June 17, 2007.

[5] Professor Thomas Braunl , "PARALLEL

PROCESSIING: Parrallllell Computterr

Arrchiittectturre and Parrallllell Soffttwarre

Desiign", Book, University of Western Australia,

2010.

[6] Ameya Waghmari, "What is Parallel Processing",

BE SCE Roll No. 41, 2000.

[7] Mohamed Iskandarani and Ashwanth Srinivasan,

"Introduction To Parallel Computing, Notes on

Parallelization Strategies", November 12, 2008.

[8] Nicholas Carriero and David Gelernter, "HOW TO

WRITE PARALLEL PROGRAMS", Book,

Massachusetts Institute of Technology, 1992.

[9] Y. F. Funga, M. F. Ercanb, Y. S mChonga, T. K.

Hoa, W. L. Cheunga and G.Singha, "Teaching

parallel computing concepts with a desktop

computer", The Hong Kong Polytechnic

University, 2003.

[10] Dr. Tran, Van Hoai, "Parallel Computing",

HCMC University of Technology, 2010.

[11] Chris Loosley and Frank Douglas, "High-

Performance Client/Server", John Wiley & Sons

© 1998.

[12] DRAFT, "Information Retrieval: Implementing

and Evaluating Search Engines", MIT Press, 2010.

 تأثيرات تنفيذ المعالجة المتوازية على التقسـيم المتوازن للحمل أعتماداً على أنظمة الذاكرة الموزعة

 زيباري نعمان عمر ياسين صبحي رفيق محمد

E.mail:subhizebari@yahoo.com

 الخلاصة
ئتت المشاكل المعقدة تحتاج إلى وقت طويل لكي تحل، مع كفاءة وأداء قليلين. لذلك، للتتتصلم متتن اتتذا الملتتاوا الدبا تتاج هامتتت تتزتتاا م تتاا تز

ذ الزتت أ المصصتتم لتتل متتن المشتتكل شتتكل تتي متتع تتاقي المشكل إلى أج اء ملتقل ، ومعامل كل ج أ على حدة حيث أن كل ع صر معالز يمكن أن ي ف
عتتتن طريتتت رتتتحك تتتترا ي متدا لتتت وأي تتتا الع اصتتتر.المعالزاج المتوا يتتت اتتتي أ تمتتت حا تتتحاج تحتتتتو علتتتى وحتتتداج متعتتتددة المعالزتتت مرتح تتت متتتع ع تتت ا

، المو عتتتت المرامزيتتتاج الم لولتتتت لزعتتتتل وحتتتداج المعالزتتتت تعمتتتتل متتتتع ع تتت ا. المعالزتتتت المتوا يتتتت تقلتتتتتش إلتتتى تتتت أ تتتتوا أ تمتتتت التتتذاكرة التتتتت المشتتتتترك
ماج، الشتتحك يمكتتن أن تحتتتو علتتى أ عتتدد متتن العقتتد أحتتدااا والمصتل (.في اذا الححث، تش ت اول أ تم الذاكرة المو ع أعتمادا على مادا العميل/الملق

عالزتت المرك يتت اتتو العميتتل والحهيتت اتتي ملقمتتاج. الصواب ميتتاج الملتتتصدم ا تتا قتتادبة علتتى حلتتتام اي م المدائيتت ، الم ت يتت ، الملتتت رق متتن قمتتل وحتتدة الم
ك ي (للملقماج. وكذلك ال من الملت رق متتن قمتتل وحتتدة المعالزتت المرك يتت والتت من الكلتتي وكذلك الت فيذ الكلي. أضاف إلى لح أ ت ل وحدة المعالز المر

الملقمتتاج -العميتتل وجا تت -للعميتتل. اتتذا الححتتث يت تتاول متت م تتوب لتقلتتتيش المشتتكل ص يمتت متوا تت وتصتتميش واب ميتتاج مر تت ل تصتتال كفتتاءة صتتين جا تت
الحمتتل -ك ومشاكل اب ال الر ال . حن ت اول ا ا ا حال دبا تتت جمتتر المصتتفوفاج لعتترت تتتت ير تقلتتتيش حيث يتش التصلم من مشاكل مادياج مكو اج الشح

اي تحابيتت ولرا تتت دبجتت عاليتت متتن -المتوا ن ل ذا الم . تش فحم ومراقح ال تائ الملتحصل صوا صرام فرعي اص للفحم متتن تت ل التكتتراباج
 ت فيذاا ت تصدام ل جافا. الدق . جميع اذا الصواب مياج تش

http://aggregate.org/LDP/

