Synthesis of 6-Aziridineyl and 6-Triazol-yl of D- Glucitol Derivatives

Nabil Y. J. Al-Hiti*

Waleed F. Hamady**
Ani***

Wajeeh, Y. AI-
*University of Anbar - College of Education for pure Science
**University of Anbar - College of Education for women
***University of Anbar - College of Science.

ARTICLE INFO

Received: 14 / 5 /2011
Accepted: 23/1/2012
Available online: 30/10/2012
DOI: 10.37652/juaps.2012.62773

Keywords:

Synthesis ,
6-Aziridineyl,
6-Triazol-yl,
D- Glucitol Derivatives.

ABSTRACT

1,3:2,4-Di-0 -ethylidene - 5 -O - tosyl - 6 - (2 - cyano -1- aziridineyl) -6-deoxy-D- glucitol (4), 6- (2- acetate -1- aziridineyl) derivative (5) and 6- (4bromo methyl-1,2,3- triazol-1-y1) (6) and the isomer (5-bromo methyl-1,2,3-triazol-1-y1) derivative (7) were prepared from the mono tosylate mono azido derivative (3).Compound (3) underwent 1,3-dipolar cycloaddition reactions with acrylonitrile and vinylacetate to give, the aziridine derivatives (4) and (5) via triazoline themolysis respectively, and with proprgyl bromide gave mixtuyre $1,2,3-$ triazol derivatives (6) and isomer (7).

Introduction:

Synthesis of alditol derivatives, especially those substituted at 1 -or 6 - or both positions have been prepared. These include; amino alditols1, 1,6- dihalogeno2, diazido3, mono azido4 and pyridyl amino5 derivatives.

Aldityl derivatives of hetrocyclic compounds(either one or two terminal carbon atoms of the alditol moiety bonded to a hetrocyclic) has also been synthesized using different approaches5,6

The intramolecular and intermolecular (3+2) dipolar cycloaddition reaction of organic azides with unsaturated compounds are well known7, to give triazole or triazoline ringis. However, application of this reaction in carbohydrate field has only been reported 8,9 . Thermolysis of $1,2,3$ - triazolines produce the corresponding aziridines 10.1 and their photolysis gives aziridines12.The mechanism of triazoline thermolysis was discussed elsewhere13 .This mechanism shows that a loss of nitrogen gives aziridines:

[^0]Certain 1,2,3-triazole derivatives have been reported to possess useful applications. Some are reported as fungicides and plant growth regulators 14 as bactericides and medical fungicides 15 as insecticides and caricides 16 . The aziridine derivatives are said to possess anticancer and anticonvulsants 17 .
In continuation of our interest in synthesizing new 6substituted position similar to those heving biological activity, we report in this worke the praparation of 6aziridineyl (4), (5) and mixture 6- (1,2,3-triazolyl) (6 +7) derivatives of D- glucitol .

Results and Discussion:

The 1,3 : 2,4 - di -0- ethylidene - D glucitol(1) was selected as a starting material . due to the secondary hydroxyl group at position carbon - 5 and primary hydroxyl group at position carbon - 6 , the di -0- ethylidene derivative (1) was prepared from the reaction D-glucitol with paraldehyde in the process of hydrochloric acid18. The reaction of (I) with Ptoluene sulphonyl chloride in pyridine19at room temperature went smoothly to give the 5,6 - ditosylate
derivative(2). The structure of (2) was analysis of i.r. spectral data .

Treatment of 2) with sodium azide in dimethyl fon-namide 20 with reflux for 10 min . give 1,3:2,4- di - 0 - ethylidene - 5-0 - tosyl - 6 - azido -6- deoxy -D-glucitol (3) (scheme 1). The structure of which was assingened from the i.r. spectrum
which showed a strong absorption at $2115 \mathrm{~cm}-1$ (N3) group and at $1370,1180,550 \mathrm{~cm} \mathrm{-1} \mathrm{(SO2)} \mathrm{of}$ the tosylate group. Unfortunately the tosylate group at C - 5 was difficult to replace and the reaction was not readily reproducible. The replacement of the secondary as well as the primary tosylate group although it was subsequenty found, to our surprise , that the 5-0-tosylate group in (2) derivative could only be displaced with difficulty even in DMF. This is because a steric environment, the 3 - Oxygen being axial with respect to the 2,4-0-ethylidene ring.

The $(3+2)$ dipolar cycloaddition reaction of monotosyl monoazide derivative (3) with acrylonitrile and vinylacetate was carried out by fusion method. The thermolysis of triazoline gave aziridine derivatives (4) and (5).

Simillarly when derivative (3) was heated with proprgyl bromide gave a mixture triazole 6 and 7 derivatives through 1,3 - dipolar cycloaddition reactions. Scheme (3) : The structures for the new compounds were assigned according to their i.r. spectral data and their elemental analysis (C.H.N) .

Scheme (3)

Experimental :

All solvents used were we parified by distilled, melting points were recorded on a status melting point instrument and are uncorrected. I R spectra were recorded on a Perken Elmer - 398 spectro photometer. Elemental analysis was performed using a Perkin Elmer 240 B) instrument. Thin layer chromotography (TLC) were performed on a silica - gel F 254 (whatman) , and developed with the solvents mentioned, spots were visualized with iodine vapour. Column chromatography was silica - gel 40 .
1,3:2,4-Di-0-ethylidene - 5-0- tosyl-6-(

2- cyano - 1- aziridineyl) - 6 - deoxy -D- glucitol (4):
The monotosyl mono azide (3) (1 gm , 2.4 mmol) was heated with acrylonitrile ($0.77 \mathrm{gm}, 14.5$ mmol) on oil bath at ($70-75$) C° for 10 hr . The residue was purified by column chromatography on silica gel (Benzene : Diethyl ether 8:2) Rf 0.23 , to give pure amorphous aziridine (4) (0.48 gin , 43%) m.p ($80-85$) C° : I.R (KBr) $2240 \mathrm{Cm}-1(\mathrm{C}=\mathrm{N})$, $1270 \mathrm{Cm}-1(\mathrm{C}=\mathrm{N}), 1360,1175$, $550 \mathrm{Cm}-1$ (SO2).

Anal. for C20 H26 07N2S :
Calcd. : C, 54.79 ; H, 5.93 ; N, 6.39
Found : C, 54.90 ; H, 6.93 ; N, 6.20
1,3:2,4-Di -0- ethylidene -5-0 - tosyl- 6-(2acetate -1- aziridineyl) -6-deoxy -D-glucitol (5):

The derivative (3) ($0.1 \mathrm{gm} ., 0.2 \mathrm{mmol}$) was heated with vinyl acetate ($0.2 \mathrm{gm}, 2.3 \mathrm{mmol}$) for 72 hr. at (9095) C° under reflux on oil bath The resulting solution was concentrated and the residue was purified by column chromatography on silica - gel (Benzene : Diethylether 8 : 2) Rf 0.07 to give syrupy product aziridine derivative (5) ($0.08 \mathrm{gm}, 80 \%$). I.R (film) : $1730 \mathrm{Cm}-\mathrm{I}(\mathrm{C}=\mathrm{O}$); $1240 \mathrm{Cm}-1$ (C-O- C) ; 1360, 1120, $590 \mathrm{Cm}-1$ (SO2).

1,3:2,4 - Di -0- ethylidene - 5-0 - tosyl - 6 - (4bromo methyl -1,2,3- triazol - 1-y1) 6 - deoxy -D glucitol (6) and isomer (5 - bromo methyl -1,2,3 triazol - 1-yl) (7) :

The mono tosyl mono azide derivative (3) (1 $\mathrm{gm}, 2.4 \mathrm{mmol}$) was heated with proprgyl bromide (1 $\mathrm{gm}, 8.7 \mathrm{mmol})$ on oil bath at ($65-70$) C° for 10 hr The resultant syrup was dissolved in chloroform and crystallized from petroleum ether $(40-60) \mathrm{C}^{\circ}$ to give mixture triazole $(6+7)(1.1 \mathrm{gm}, 85 \%)$ m.p(148 150) C°; T.L.C : (Benzene : ether $8: 2$) Rf 0.15, 0.11:I.R(KBr):1600 Cm-I(C=C); $660 \mathrm{Cm}-1$ (C-Br) ; $1250 \mathrm{Cm}-1(\mathrm{C}-\mathrm{N}) ; 1370,1170,540 \mathrm{Cm}-1$ (SO2).

Anal. for C20 H26 07 N3 S Br. 2CHC13 : Calcd : C, 34.24 ; H, 3.63 ; N, 5.44 Found : C, 35.32 ; H, 3.52 ; N, 6.19

References:

1. Z.F Fialkiewiez and S. Kolka, Wiad Chem., 24 (1970) 823.
2. J . Kuszman and L. Vargha Carbohydr. Res. ,17(1971)309
3. A.J.A Muklos, K.S. Al-Dulaimi and A.S. Abdul Razzak, Iraqi J. Agr. Sci., Zanco , 61(1980)72.
4. A.D Barford , Ph.D. Thesis, Reading University ,1968.
5. Y. Ali, A. J. A.Kadir and N.Y Al-Hiti, J. Ibn AlHaitham Pare and APP_Sci., Vol. 8 (1) (1997)

96-108.
6. J.A. Glabis perez , R.B. Caballero and A.C. ventula, Carbohyclr. Res. , 134 (1979) 129.
7. R. Huisgen ,1,3-cycloaddition chemistry , Vol. 1, A. Padwa ed., Wiley Intersciences, New York (1984) p. 316.
8. F. Chretien and B. Gross, J. Heterocyclic chem. .19 (1982) 263.
9. M.J Mohammad, D.A Abaci, A.J. Kadir and Y. Ali, Iraq J of chem., Vol 23 No. (2) (1997) 225.
10. D. Pocar , E. Roversi , P. Trimar co and G . Volgattarri , Chemische Berichte, 128 (1995) 487.
11. M.E. Hermes and F.D Marsh., J Org. Chem., 37 (1972)2969.
12. H. Guast , B. Seiferling, Tetrahedron Lett, 23 (1982)4681.
13. G.Szeimies and R. Huisgen , chem., Ber., 99 (1966) 49.
14. G. Holmewood, K.H. Buechel ,P. Reiuecke and G. Haenssler , German patent 3,510 , 411 (1986) :Chem., Abstr., 106, 14714 e (1987)
15. S.A. Inke, chem. Abstr., Spanish patent 548,092 (1986) ;106; 67321,-(1987).
16. C.Luethy and R. Zurflueh, European patent 202 , 321 (1987); chem., Abstr., 106 ,138455r (1987).
17. K. Tsou and K. Su . H. C. F. Hoegerle , J. med . chem., 6(1963) 435-439.
18. H. Apple , J Chem., Soc ., (1935)425.
19. P. Bladon and L.N. Owen , J. Chein., Soc., (1950) 598.
20. N. Y. J. Al-Hiti , Ph. D. thesis, University of Baghdad (1998).

تحضير مشتقات 6- ازردينيل و 6- تريزوليل لـ - D- كلوسيتول

ت ونيل ياسين جمعة الهيتي
الخلاصة:
تم تحضير مشتقات 3,1: 4,2 - ثـئي - O- ايثاليدين - 5-O- توسيل-6- (2- سيانو -1-ازريدينيل) -6- ديوكسي - D - 5 - - كلوسيتول (4) و 6- (2- اسيتيت -1- ازردينيل) (5) و 6 - (4- برومو مثيل -3,2,1- ترايزوليل) (6) وايزومره (5- برومو مثيل - 3,2,1- ترايزوليل) (7) من مشتق أحادي التوسيل احادي الأزيد (3) ومن خلال تفاعلات الاضافة ثنائية التطب 3,1- الحقية تم مفاعلة المركب (3) مع كل من الاكريلونتريل واسيتات الغاينيل لنحصل عن طريق التحلل الحراري لمركبات الترايزولين الوسطية على مشتقات الأزردين (4) و (5) على التوالي . ومـع المركب الاستيليني بروميي البروبرجيل لنحصل على مزيج مشتق 3,2,1- ترايزول (6) وايزومره (7).

[^0]: __ Corresponding author at: University of Anbar - College of Education for pure Science. E-mail address:

