A linear relation to calculate one particle expectation value <r-1> for $1 S 2$ configuration for $2<Z<100$
 WISSAM AHMED AMEEN

University of Anbar - Collage of Science.

ARTICLEINFO

Received: 29 / 5 /2011
Accepted: 13/2/2012
Available online: 30/10/2012
DOI: 10.37652/juaps.2012.63150

Keywords:

Expectation value;
Hartree-Fock-Roothan;
He like atoms.

ABSTRACT
One particle expectation value $\langle\mathrm{r}-1>$ for 1 S 2 configuration for $\mathrm{Z}=2$ to 10 are evaluated by using Hartree-Fock-Roothaan (HFR) wavefunction. A linear relation are determined to describe these results, and this relation have tested to check its ability to calculate one particle expectation value <r-1> for atoms with higher atomic numbers ($\mathrm{Z}=2$ to 100). Results are in good agreement with calculations given by [S.L. Saito Atomic Data and Nuclear Data Tables95, (2009), 836-870] for Z<20.

Introduction:

The $1 \mathrm{~S}^{2}$ configuration plays an important role in the quantum mechanical calculations for its simplicity and applicability as a system to calculate some of its atomic properties like the evaluation of the one particle expectation value with power $n=-1\left\langle r_{1}{ }^{-1}\right\rangle$, the subject of this research. It's very important to calculate $\left\langle\mathrm{r}_{1}{ }^{-1}\right\rangle$ because of its direct relation with the evaluation of the total energy for the system under studying. Different methods were used in quantum mechanical calculations but Hartree-Fock (HF) equations were first proposed by Fock in 1930 has taken a central role in studies of atomic and molecular electronic structure. Atomic HF equations give physical properties of various atomic systems in the nonrelativistic independent particle approximation. These data are also important for molecular calculation, for it is impossible to develop basis sets and pseudo-potentials for use in molecular calculations without them [1][2].

[^0]But these methods still needs many sophisticated mathematical and programming techniques to evaluate an atomic property. In this research a simple linear relation was determined to evaluate one particle expectation value with power $n=-1$ for $1 \mathrm{~S}^{2}$ configuration without any need to use the traditional procedures to calculate this property. This relation may help as a fast tool to check published atomic data and may be to guess an approximate values for $\left\langle\mathrm{r}_{1}{ }^{-1}\right\rangle$.

Theory:

One particle expectation value for $\mathrm{n}=-1$ given by the following equation:

$$
<\mathrm{r}_{1}^{-1}>=\int_{0}^{\infty} D\left(r_{1}\right) r_{1}^{-1} d r_{1},
$$

Where
$D(r)$: is the radial electronic density distribution for an electronic system and given by:

$$
\begin{aligned}
& D\left(r_{1}\right)=\int_{0}^{\pi} \int_{0}^{2 \pi} r_{1}^{2} \rho\left(r_{1}\right) d \Omega \\
& \rho\left(r_{1}\right)=N \int \psi^{*}\left(x_{1}, x_{2}, . ., x_{N}\right) \\
& \times \psi\left(x_{1}, x_{2}, . ., x_{N}\right) d s_{1} d x_{2} \ldots d s_{N} d x_{N}
\end{aligned}
$$

The standard notation $d \Omega=\sin (\theta) d \theta d \phi$ is employed, x_{i} denotes a combined spatial and spin coordinate and $\psi\left(x_{1}, x_{2}, . ., x_{N}\right)$ is normalized [3].

The HF wave function $\psi_{H F}$ are used to perform calculations in this research.

The HF wave function for two electron system is:

$$
\psi_{H F}(1,2)=\frac{1}{\sqrt{2}}\left[\Phi_{1}(1) \Phi_{2}(2)-\Phi_{1}(2) \Phi_{2}(1)\right]
$$

Where

$$
\Phi_{j}(r, \theta, \phi)=R(r) Y(\theta, \phi)
$$

$R(r)$ is one particle radial wavefunction and $Y(\theta, \phi)$ is the one particle angular wavefunction of the total wavefunction $\psi_{H F}(1,2)$.

Slater-Type Orbital's (STO's) [4] are used within HF wavefunction in equation (4), the radial part of STO's given by the following equation:

$$
\begin{equation*}
\mathrm{R}(\mathrm{r})=\sum_{k=1}^{M} C_{k} N_{k} r^{n_{i}-1} e^{-\left(\xi_{k}\right) r_{k}} \tag{5}
\end{equation*}
$$

M : Number of basis sets
n_{k} : Principle quantum number
ξ_{k} : Orbital exponent
C_{k} : Expansion coefficient.
N_{k} : Normalization constant and given by:

$$
N_{k}=\sqrt{\frac{\left(2 \xi_{k}\right)^{2 n_{k}+1}}{\left(2 n_{k}\right)!}}
$$

The final equation that used to calculate the expectation value by using data give by [5] as follow:

$$
\begin{gather*}
<r_{1}^{-1}> \\
=\sum_{k=j}^{M} C_{k} C_{j} N_{k} N_{j} \frac{\left(2 n_{k}-1\right)!}{\left(2 \zeta_{k}\right)^{2 n_{k}}} \tag{6}\\
+2 \sum_{j<k}^{M} C_{k} C_{j} N_{k} N_{j} \frac{\left(n_{k}+n_{j}-1\right)!}{\left(\zeta_{k}+\zeta_{j}\right)^{n_{i}+n_{j}}}
\end{gather*}
$$

The one particle expectation value with power $n=-1$ increases linearly throughout the series as shown in figure(1), so that, the difference between any two values in the series given by:

$$
<\mathrm{r}_{1}^{-1}>^{\Delta_{i, i+1}=\left\langle r_{1}^{-1}>_{i+1}-<r_{1}^{-1}>_{i}\right.}
$$

Figure(1): Liner increasing of $\left.<\mathrm{r}_{1}{ }^{-1}\right\rangle$ with Z , all results in atomic units (a.u.).

So that, the expectation value $<r_{1}{ }^{-1}>_{i+1}$ for any atom throughout the 2 electron like system for $1 S^{2}$ configuration produced by an additive process, and this phenomenon are used in this work to calculate $\left.<r_{1}{ }^{-1}\right\rangle$ for $Z=2$ to 100 by using the following equation:

$$
<r_{1}^{-1}>_{i+1}=<r_{1}^{-1}>_{i}+\Delta_{i, i+1}
$$

The value of $\Delta_{i, i+1}$ was taken as the average for 10 atoms and equal to 0.99128 .

Results and Conclusions:

Tables (1) and figure (2) shows the results of one particle expectation value with $n=-1$ that calculated by using data from Ref.[5] within equation (6), for atoms of $Z=2$ to 10 in addition to the results from equation (7) that represents the new approach in this research for $Z=2-100$, all results was compared with results of Ref.[2]. All these calculations have made by using MathCad 14.

The values of $<r_{1}{ }^{-1}>$ as shown in figure (1) can be divided into three zones, the first for the interval of $2<Z<8$ and the second is for the interval $8<Z<16$ and the third is for the interval $16<Z<100$. The first zone has a very small differences with respect to results given by the traditional method that given by equation (6) and listed within [2], but the best results of the new approach of this research that given in equation (7) appears
clearly in the second zone where the differences are very small with respect to published work. The third zone shows that the differences between the results given by equation (7) and that given by [2] increases linearly with the increasing of Z within this zone and this may be happened because the roots of the linear relation in equation (7) that emerged from HF calculations with its well-known limitations for $Z>20$ because of the neglecting of relativistic effects [7]. so that the main conclusion in this research is that the linear relation in this research can be used to calculate the one particle expectation value for power $\mathrm{n}=-1$ for $\mathrm{Z}=2-20$ to give a results in good agreement with the published data for $1 \mathrm{~S}^{2}$ configuration.

Table(1): Expectation values for $\mathrm{Z}=2-10$ by using HFR, expectation value for $\mathrm{Z}=2-100$ by using the common difference approach $\Delta_{\mathrm{i}, \mathrm{i}+1}$, all results in atomic units (a.u.).

z	$<r_{1}{ }^{-1}$		$<r_{1}{ }^{-1}$	$<r_{1}{ }^{-1}$	
	$>_{\text {HFR }}^{a}$	$\Delta_{i, i+1}$	$>^{a}$	$>^{\text {b }}$	δ^{c}
2	1.68729		1.687290	1.687282	0.00001
3	2.68386	0.996570	2.678574	2.685034	0.00646
4	3.676414	0.992554	3.669857	3.681877	0.01202
5	4.668731	0.992317	4.661141	4.674339	0.01320
6	5.660406	0.991675	5.652425	5.664439	0.01201
7	6.65196	0.991554	6.643708	6.653236	0.00953
8	7.637847	0.985887	7.634992	7.642171	0.00718
9	8.629412	0.991565	8.626275	8.630362	0.00409
10	9.617559	0.988147	9.617559	9.618054	0.00050

10.60884	10.60738	0.00146
11.60013	11.59795	0.00217
12.59141	12.58925	0.00216
13.58269	13.58115	0.00154
14.57398	14.57355	0.00042
15.56526	15.56645	0.00119
16.55654	16.55969	0.00315
17.54783	17.55323	0.00540

$18.53911 \quad 18.547360 .00825$
$19.53040 \quad 19.54193 \quad 0.01154$
$20.52168 \quad 20.53754 \quad 0.01586$
$21.51296 \quad 21.53364 \quad 0.02068$
$22.50425 \quad 22.53012 \quad 0.02587$
$23.49553 \quad 23.52726 \quad 0.03173$
$24.48681 \quad 24.52397 \quad 0.03716$
$25.4781 \quad 25.52120 \quad 0.04310$
$26.46938 \quad 26.518660 .04928$
$27.46066 \quad 27.51630 \quad 0.05563$
$28.45195 \quad 28.51438 \quad 0.06244$
$29.44323 \quad 29.51205 \quad 0.06882$
30.4345230 .509720 .07521
$31.42580 \quad 31.50738 \quad 0.08158$

33	32.41708	32.50504	0.08796	55	54.22532	54.46797	0.24265
34	33.40837	33.50273	0.09436	56	55.21661	55.46669	0.25008
35	34.39965	34.50043	0.10078	57	56.20789	56.46547	0.25758
36	35.39093	35.49815	0.10722	58	57.19917	57.46444	0.26526
37	36.38222	36.49597	0.11375	59	58.19046	58.46358	0.27312
38	37.37350	37.49385	0.12035	60	59.18174	59.46262	0.28088
39	38.36478	38.49189	0.12711	61	60.17302	60.46169	0.28867
40	39.35607	39.49003	0.13396	62	61.16431	61.46080	0.29649
41	40.34735	40.48833	0.14098	63	62.15559	62.45994	0.30434
42	41.33864	41.48663	0.14800	64	63.14688	63.45898	0.31211
43	42.32992	42.48493	0.15501	65	64.13816	64.45827	0.32011
44	43.32120	43.48343	0.16222	66	65.12944	65.45748	0.32804
45	44.31249	44.48192	0.16943	67	66.12073	66.45671	0.33599
46	45.30377	45.48052	0.17675	68	67.11201	67.45597	0.34396
47	46.29505	46.47906	0.18401	69	68.10329	68.45525	0.35195
48	47.28634	47.47763	0.19129	70	69.09458	69.45455	0.35997
49	48.27762	48.47620	0.19858	71	70.08586	70.45377	0.36791
50	49.26890	49.47479	0.20589	72	71.07714	71.4530	0.37586
51	50.26019	50.47339	0.21320	73	72.06843	72.45225	0.38382
52	51.25147	51.47201	0.22054	74	73.05971	73.45151	0.39180
53	52.24276	52.47064	0.22789	75	74.05100	74.45078	0.39979
54	53.23404	53.46929	0.23525	76	75.04228	75.45007	0.40779

$\left.\begin{array}{|l|l|}\hline 76.03356 & 76.44936\end{array}\right) 0.4158$ (77.44869 0.42385
$83.96383 \quad 84.44390 \quad 0.48007$
$84.95511 \quad 85.44322 \quad 0.48811$
$85.94640 \quad 86.442560 .49616$
$86.93768 \quad 87.44190 \quad 0.50422$
$87.92897 \quad \mathbf{8 8 . 4 4 1 2 7} \quad \mathbf{0 . 5 1 2 3 0}$
$88.92025 \quad 89.44064 \quad 0.520390$
$89.91153 \quad 90.44011 \quad 0.52858$
$90.90282 \quad 91.43955 \quad 0.53674$
$91.89410 \quad 92.43901 \quad 0.54491$
$92.88538 \quad 93.43851 \quad 0.55313$
$\begin{array}{lll}93.87667 & 94.43799 & 0.56132\end{array}$
$94.86795 \quad 95.437440 .56949$
$95.85923 \quad 96.436940 .57770$
$96.85052 \quad 97.43648 \quad 0.58597$

99	97.84180	98.4360	0.59420
100	98.83309	99.43553	0.60244

a: Present work

b: Ref.[2]
c: $\delta=\left|<r^{-1}>^{a}-<r^{-1}>^{b}\right|$

Figure(2): The relative difference δ between the results of linear equation and HFR one for $2 \leq \mathrm{Z} \leq 100$.
Where $\delta=\left|<\boldsymbol{r}^{-1}>^{a}-<\boldsymbol{r}^{-1}>^{b}\right|$, all results in this figure are in atomic units (a.u.).

References:

[1] I. Porras, J. Phys. B: At. Mol. Opt. Phys. 28 (1995) 4391-4398.
[2] S. L. Sito, Atomic Data and Nuclear Data Tables, 95, (2009), 836-870.
[3] K. E. Banyard ,The journal of chemical physics, 48, 5,1968.
[4] A. Szabo and N.S.Ostund, "Modren quantum Chemistry, introduction to advanced electronic structure theory ",1989.
[5] A. Sarsa, et al , Atomic Data and Nuclear Data Tables, 88, (2004) ,163-202.
[6] W. Ahmed, 'A Study for Nuclear Magnetic Shielding Constant for $Z=2$ to 10^{\prime}, (2006), M.Sc. Thesis, Al-Nahrain University.
[7] M. A. Abul Sattar, 'Self-Consistent field calculations of covalent semiconductors' ;(1997),Ph.D. thesis ,Baghdad University.

علاقة خطية لحساب القيمة المتوقعة لبعد الالكترون عن النواة >r-1> للغلاف 1S2 للأعداد الذريـة $2<Z<100$

وسام احمد امين

E-mail: wissam.ahmed@gmail.com

الخلاصة
تم حساب القيمة المتوقعة لجسم واحد >r-1> للغلاف 1S2 لللزرات ذات اللأعداد النرية Z من 2 الى 10 باستخدام دالة هارتري -فوك روثان ، ومن ثم تم ايجاد علاقة خطية تصف هذه البيانات، وقد تم اختبار هذه العلاقة لمعرفة امكانية استخدامها لحساب ذرات ذات اعداد ذرية اكبر (Z Z من 2 الى 100)

[^0]: ——* Corresponding author at: University of Anbar - Collage of Science.E-mail address: wissam.ahmed@gmail.com

