
P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2012,(6), (2) :85-89

1

 Improving Efficiency of Round Robin Scheduling

Using Ascending Quantum And Minumim-Maxumum Burst

Time

Ali Jbaeer Dawood

* University of Anbar - College of Computer.

A R T I C L E I N F O A B S T R A C T

Received 00 / 00 /00

Accepted: 00 / 00 /00
Available online: 9/12/2012

DOI: 10.37652/juaps.2012.63364

 Round Robin (RR) is a kind of process algorithms, where the time quantum is

fixed along the processes execution. In the other hand it depending on the First Come

First Serve (FCFS) algorithm. Also RR performs in timesharing system by given

each process static Time Quantum (TQ). In this paper, The TQ studied to improve

the efficiency of RR and performs the degrades with respect to Context Switching

(CS), Average Wait Time (AWT) and Average Turned Around Time (ATAT) that an

overhead on the system. Thus, the new approach was proposed to calculate the TQ,

known as Ascending Quantum and Minumim-Maxumum Round Robin (AQMMRR).

The processes were ascending with shortest remaining burst time and calculate the

TQ from multiply the summation of minimum and maximum BT by (80) percentage.

The experimental result shows that AQMMRR performs better than RR and

comparing with other two related works.

Keywords:

component: Round Robin;

Time Quantum;

Context Switching;

Average Wait Time;

Average Turned Around Time.

Introduction

Scheduling is central to operating system design.

In case of multi-programmed operation system CPU

scheduling plays a fundamental role by switching the

CPU among various processes. The intention of an

Operating system should allow process many as

possible running at all times in order to maximize the

CPU utilization. In a multi-programmed operating

system a process is executed until it must wait for the

completion of some I/O request. In this case the time

has been used proficiently. A number of processes are

kept in memory simultaneously and while one process

occupies the CPU selected by the Operating. [1]

CPU scheduling algorithms decides which of the

processes in the Ready Queue (RQ) is to be allocated to

the CPU. There are many different CPU scheduling

algorithms, out of those algorithms.

The processes are assigned to a processor are put

in a queue called Ready Queue. CPU Utilization is the

percentage of time that the processor is busy. It

generally ranges from 0 to 100 percent. Throughput

means how many processes are finished by the CPU

with in a time period.

* Corresponding author at: University of Anbar - College of

Computer.E-mail address: dralijd@yahoo.com

The time interval between the submission of the

process and time of the completion is the Turnaround

time. Waiting time is the amount of time a process is

waiting in the RQ, waiting in I/O and waiting in CPU.

The number of times CPU switches from one process to

another is called as the number of context switches.

There are well known CPU scheduling algorithms that

has been developed such as First Come First Serve

(FCFS) algorithm, Shortest Job First (SJF) algorithm,

Shortest Remaining Time Next (SRTN) algorithm,

Round Robin (RR) algorithm and Priority Scheduling

algorithm. RR and SRTN are preemptive in nature. RR

is most suitable for time sharing systems. But its

average output parameters (turn-around time, waiting

time, etc.) are not feasible enough to be employed in

real-time systems. [2]

RR is the oldest, simplest and most widely used

proportional share scheduling algorithm [2, 3, and 4].

It’s designed to give a better responsive but the worst

turnaround and waiting time due to the fixed time

quantum concept. The scheduler assigns a fixed time

unit (quantum) per process usually 10-100

milliseconds, and cycles through them. RR is similar to

FCFS except that preemption is added to switch

between processes [1, 5, and 6].

mailto:dralijd@yahoo.com

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2012,(6), (2) :85-89

2

A. Scheduling Criteria.

Many criteria have been suggested for comparing

CPU scheduling algorithms. Which characteristics are

used for comparison can make a substantial difference

in which algorithm is judged to be best. The criteria

include the following: [9]

 CPU Utilization. We want to keep the CPU as busy

as possible.

 Throughput. If the CPU is busy executing processes,

then work is being done. One measure of work is the

number of processes that are completed per time

unit, called throughput. For long processes, this rate

may be one process per hour; for short transactions,

it may be 10 processes per second.

 Turnaround time. From the point of view of a

particular process, the important criterion is how

long it takes to execute that process. The interval

from the time of submission of a process to the time

of completion is the turnaround time. Turnaround

time is the sum of the periods spent waiting to get

into memory, waiting in the ready queue, executing

on the CPU, and doing I/O.

 Waiting time. The CPU scheduling algorithm does

not affect the amount of the time during which a

process executes or does I/O; it affects only the

amount of time that a process spends waiting in the

ready queue. Waiting time is the sums of periods

spend waiting in the ready queue.

 Response time. In an interactive system, turnaround

time may not be the best criterion. Often, a process

can produce some output fairly early and can

continue computing new results while previous

results are being output to the user. Thus, another

measure is the time from the submission of a request

until the first response is produced. This measure,

called response time, is the time it takes to start

responding, not the time it takes to output the

response. The turnaround time is generally limited

by the speed of the output device.

B. Motivation

In traditional RR the context switching is the

number of process in each round, its high when

comparing with other scheduling algorithms. In other

hand the givers large averages waiting time and

turnaround time. Thus motivates us to improving the

traditional RR to overcome the above limitation.

C. Related works

In last few years many researcher studied RR to

increase the performance of RR scheduling in different

ways. This is done by CPU utilization, throughput,

turnaround time, waiting time and number of context

switching.

SARR algorithm [5] is based on a new approach

called dynamic time quantum, in which time quantum

is repeatedly adjusted according to the burst time of the

running processes. In MMRR [2] time quantum is taken

as the range of the CPU burst time of all the processes.

The range of the processes is the difference between the

largest (maximum) and smallest (minimum) values.

The authors [10] calculate the time slice for the tasks

based on their Priority and these tasks are arranged

based on Priority execute in the main Processor with

their individual time slices. Time slice calculation for

this architecture using the rang, as shown below:

 Range (R) X Total no. of Process in the system (N)

Timeslice= .…(2)

 Priority (Pr) X total no. of Priority in the system (P)

 Maximum cpu burst + minimum cpu burst

Range= ……(3)

 2

Dynamic Quantum with Re-adjusted Round

Robin (DQRRR) [7] algorithm is based on a TQ, in

which TQ is calculated as median of the existed set of

processes. SRBRR algorithm [8] the time quantum is

taken as the median of the increasingly sorted burst

time of all the processes.

Proposed Approach

In our work, TQ calculating by ascending the

TQ, sum the maximum and minimum CPU burst time

and multiply the result by (80) percentage. The (80)

percentage is chosen depending to two reasons: First, if

the TQ calculated depending only on the summation the

algorithm is become as the Short Job First (SJF).

Second, the rule of thumb is that 80 percent of the CPU

bursts should be shorter than the time quantum. Lastly,

improving to the MMRR algorithm, where if the result

of subtracting of the rang (MaximumBT-MinimumBT)

is less than (25), the new TQ is (25), in this state this

algorithm become as traditional RR [2], as shown in the

bellow equation.

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2012,(6), (2) :85-89

3

TQ = M, if ≥ 25

 25, if M < 25 ……………… (1)

This led to the uniqueness of our approach.

A. Proposed Algorithm

When the processes are in the ready queue, the

number of processes (n) and the arrival time are

accepted as input:

Input: (n=number of processes, BT= burst time, Arrival

Time)

Output: (Gantt Chart, AWT, ATAT and CS)

1. All the processes present in ready queue are sorted in

ascending order.

2. While(Ready Queue!= NULL)

MaxMin = MaximumBT + MinimumBT

TQnew= MaxMin * 0.8

3. //Assign TQnew to (1 to n) process

 For i = 1 to n assign TQnew to all the available

processes

4. Calculate the remaining burst time of the processes

5. Remove all processes from RQ if it's BT = 0 //BTPi=0

6. If new process is arrived add to the Ready Queue

7. // begin another round

 go to step 2

8. Draw the Gantt Chart, Calculate AWT, ATAT and CS

9. End

Figure 1. AQMMRR proposed algorithm

Start

Sorting the processes BT in ascending order

MaxMin = MaximumBT + MinimumBT

TQnew= MaxMin * 0.8

Calculate remaining burst time

If BTPi = 0

If i > n

Remove process from RQ

Y

i = i+1

Loop for i=1 to n

Add new process arrived to RQ

Reset No. of processes

N

Y

N

Loop While

RQ!=NULL

If RQ!=NULL

Y

N

End

Figure 2. The flowchart of AQMMRR proposed algorithm

B. Illustration

Suppose five processes arriving at zero time, and

CPU Burst Time comes as the following order (P1=28,

P2=92, P3=40, P4=30, P5=10). First step arrange the

BT in ascending order. The processes become in the

following order (P5, P1, P4, P3 and P2). Calculate the

TQ by summing the minimum BT with the maximum

BT and multiply the summed by 0.8

(10+92)*0.8=81.6≈82). After first round, remove the

processes (P1, P3, P4, P5), because it's remaining

BT=0. In the second round only P2 has BT=(92-

82)=10. Thus, the TQnew=10, in this case not need to

calculate, because the TQnew=(10+10)*0.8=16, all

most less than 10. Lastly, calculate AWT=44.8,

ATAT=84.8 and CS=5.

Simulations and Result Analysis

The simulation of our proposed algorithm, the set

of five processes was taken in two cases. The

evaluation done by comparing the results of traditional

RR, SRBRR and MMRR with result of our algorithm

(AQMMRR). In traditional RR the fixed TQ=25.

 Case 1: Suppose there are five processes arriving at

time=0, TQ for RR is 25, with BT as shown in (table 1)

below:

Table 1. Snap sheet for case 1

Process Arrival

time

Burse

Time

P1 0 13

P2 0 35

P3 0 40

P4 0 63

P5 0 97

Table 2 below shows the comparison result among RR,

SRBRR, MMRR and our algorithm AQMMRR

Algorithm TQ AWT ATAT CS

RR 25 97.4 148.2 11

SRBRR 46, 34, 17 71.6 122.4 7

MMRR 84, 15 62.4 113.2 5

AQMMRR 88, 14 62.4 113.2 5

a. RR TQ= 25

P1 P2 P3 P4 P5 P2 P3 P4 P5 P4 P5 P5

 0 13 38 63 88 113 123 144 169 194 207 232 254

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2012,(6), (2) :85-89

4

b. SRBRR TQ= 46 TQ=34 TQ=17

P1 P2 P3 P4 P5 P4 P5 P5

 0 13 48 94 140 186 203 237 254

d. AQMMRR TQ= 88 TQ=14

P1 P2 P3 P4 P5 P5

0 13 48 94 157 245 254

c. MMRR TQ= 84 TQ=15

P1 P2 P3 P4 P5 P5

0 13 48 94 157 241 254

Figure 3. Gantt Chart for (a. RR b. SRBRR c. MMRR

d. AQMMRR)

From table 2 shows MMRR and AQMMRR are

the same results. When, the different between

maximum and minimum is less than 25, the behavior of

MMRR as in RR. But in our algorithm AQMM not

affected and resisted to this consideration.

 Case 2: Suppose there are five processes

arriving at time=0, fixed TQ=25, with BT as shown in

table 3 below:

Table 3. Snap sheet for case 1

Process Arrival

time

Burse

Time

P1 0 20

P2 0 22

P3 0 25

P4 0 30

P5 0 40

Table 4. Below shows the comparison result among

RR, SRBRR, MMRR and our algorithm AQMMRR

Algorithm TQ AWT ATAT CS

RR 25 50.2 77.6 7

SRBRR 25, 10, 5 50.2 77.6 7

MMRR 25, 10, 5 50.2 77.6 7

AQMMRR 48 45.2 72.6 5

a. RR TQ= 25

P1 P2 P3 P4 P5 P4 P5 P5

 0 20 42 67 92 117 122 132 137

b. SRBRR TQ= 25 TQ=10 TQ=5

P1 P2 P3 P4 P5 P4 P5 P5

 0 20 42 67 92 117 122 132 137

c. MMRR TQ= 25 TQ=10 TQ=5

P1 P2 P3 P4 P5 P4 P5 P5

 0 20 42 67 92 117 122 132 137

d. AQMMRR TQ= 48

P1 P2 P3 P4 P5

 0 20 42 67 97 137

Figure 4. Gantt Chart for (a. RR b. SRBRR c. MMRR

d. AQMMRR)

Conclusion

From the comparisons in above section, the

results was concluded in tables 2 and 4 that our

algorithm AQMMRR is better than the others, in terms

of AWT, ATAT and CS.

REFERENCES

 [1] Silberchatz, Galvin and Gagne, (2003) , "operating

systems concepts",(6th edn, John Wiley and Sons).

 [2] S. K. Panda, S. K. Bhoi, (January 2012), "An

Effective Round Robin Algorithm using Min-Max

Dispersion Measure". International Journal on

Computer Science and Engineering (IJCSE) ISSN :

0975-3397 Vol. 4 No. 01.

[3] J. Nieh, C. Vaill and H. Zhong, (June 2001),

“Virtual-Time Round-Robin: An O(1) Proportional

Share Scheduler”, Proceedings of the USENIX

Annual Technical Conference, Boston,

Massachusetts, USA, pp. 25-30.

[4] S. M. Mostafa, S. Z. Rida and S. H. Hamad,

(October 2010), “Finding Time Quantum of Round

Robin CPU Scheduling Algorithm in General

Computing Systems using Integer Programming”,

IJRRAS 5 (1), pp.64-71.

[5] Rami J. Matarneh, (2009), “Self-Adjustment Time

Quantum in Round Robin Algorithm Depending on

Burst Time of the Now Running Processes”,

American Journal of Applied Sciences, Vol 6, No.

10.

[6] Tarek Helmy, Abdelkader Dekdouk, (2007),

“Burst Round Robin as a Proportional-Share

Scheduling Algorithm”, In Proceedings of The

fourth IEEE-GCC Conference on Towards Techno-

Industrial Innovations, pp. 424-428, Bahrain.

[7] H. S. Behera, R. Mohanty, D. Nayak, (August

2010), “A New Proposed Dynamic Quantum with

Re-Adjusted Round Robin Scheduling Algorithm

and Its Performance Analysis”, International Journal

of Computer Applications (0975 –8887), Volume 5–

No.5.

[8] Rakesh Mohanty, H. S. Behera, Khusbu Patwari,

Monisha Dash, (2010), “Design and Performance

Evaluation of a New Proposed Shortest Remaining

Burst Round Robin (SRBRR) Scheduling

Algorithm”, In Proceedings of International

Symposium on Computer Engineering &

Technology (ISCET), Vol 17.

[9] R. K. Yadav, A. K. Mishra, N. Prakash and H.

Sharma, (2010), “An Improved Round Robin

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2012,(6), (2) :85-89

5

Scheduling Algorithm for CPU scheduling”,

(IJCSE) International Journal on Computer Science

and Engineering Vol. 02, No. 04, 1064-1066.

[10] Yaashuwanth .C IEEE Member, Dr.R. Ramesh,

(March 2010), “Design of Real Time scheduler

simulator and Development of Modified Round

Robin architecture”, International Journal of

Computer Science and Network Security, VOL.10

No.3.

 اعمى وقت لمتنفيذ-تحسين كفاءة خوارزمية الجدولة راوند روبن باستخدام الكم التصاعدي وادنى

 عمي جبير داود

dralijd@yahoo.com
 الخلاصة:

ن ياتتي تعتبر خوارزمية راوند روبن من خوارزميات الجدولة التي تستخدم كما وقتيا ثابتاا خا م مادل التن.يافي ولاي المفابام لماي تعتماد ما خدماة ما
سساين ادال اولاي وهي تؤدي بشكم جيد لي انظمة التشارك لي الوقت مان خا م ا ءاال العممياات كماا وقتياا مساتفراي لاي هافا البسا تام دراساة كام الوقات لت
اقتارا اسامو خوارزمية راوند روبن وتسسين اخ.اقاتما لي التبديم الضمني ومعادم وقات الانتظاار ومعادم وقات الانتماال التاي اادل ماتثفام النظاامي لمافا تام

لمتن.ياف وتام استساابه بالضار ا م راوند روبني وكانت العممياات تصاا دية ماق اقام وقات متبفاي -جديد لسسا كم الوقت تم تسميته الكم التصا دي وادن
 ا م وقتي وقد اثبتت النتائج ان الخوارزمية المفترسة الضم ادال من الخوارزمية الاصمية والا مام السابفةي -% من مجموع ادن 08بنسبة

