Document Type : Research Paper

Authors

Tikrit university - College of science.

10.37652/juaps.2012.78439

Abstract

The aim of the present study was the molecular characterization and the evaluation of variability and genetic relationship of six Pseudomonas aeruginosa isolates using PCR-based Randomly Amplified Polymorphic DNA (RAPD) technique. A total number of 86 samples were collected from patients that hospitalized in Tikrit Teaching Hospital in Tikrit city. These samples were taken from patients basing on the sources of infections, the isolates were taken from: wounds, ear, burns, urine, sputum, and eyes infections. Using enrichment, selective media, and biochemical tests, that characterized and identified as P. aeruginosa.
Genomic DNA was extracted from six P. aeruginosa isolates isolated from these different sources. These genomic DNA samples were found to have a suitable concentration and purity for RAPD-PCR analysis. RAPD-PCR technique was performed using 15 different Operon random primers. Eleven primers gave successful amplification results in repeated experiments. As a result, the total number of amplified bands was 270 and the total number of polymorphic bands was 234. The highest number of polymorphic bands (39 bands) was produced by primer OPX-01. The primer efficiency ranged from 3.70 (primer OPA-11) to 14.44 (primer OPX-01) and the discriminatory value ranged from 1.70% (primer OPA-11) to 16.66% (primer OPX-01). In addition, genetic distance and cluster analysis among different P. aeruginosa isolates were estimated by using UPGMA computer program basing on RAPD-PCR banding patterns that obtained in this study. These results suggesting that possible and frequent occurrence of mutations in DNA sequencing P. aeruginosa bacteria from different sources and locations. This study has proved existence genetic differences (DNA polymorphism) among the six P. aeruginosa isolates isolated from different sources. Therefore, we can say that RAPD technique could be an efficient technique for studying the molecular characterization and the epidemiology of P. aeruginosa bacteria.

Keywords

Main Subjects

  1. Whiteley, M., Bangera, M.G., Bumgarner, R.E., Parsek, M.R., Teitzel, G.M., Lory, S., and Greenberg, E.P. (2001). Gene expression in  Pseudomonas aeruginosa biofilms. Nature 413:6858. 860-864.

2. BAILEY and SCPTT’S. (2004). Diagnostic Microbiology. P: 212. 10th ed. Mosby.

3. Schaechter, M., Baldauf, S.L., Baross, J.A., Baulcombe, D.C., Haselkorn, R., HopWood, D.A., and Ingraham, J.L.(2009). Encyclopedia of Microbiology. P: 314. 3 ed. AP Press.USA.

4. Pollak, M.(1998). Infections due to Pseudomonas species and related organisms in Adams, E., Braunwald, K.J., Isselbacher, J.B., Martin, and Wilson, J.D. p:156.  McGraw-Hill. New jersey, U.S.A.

  1. 5.  Van Delden, C., and Iglewski, B.H.(1998). Cell-to-Cell signaling and Pseudomonas Aeroginosa infections. Emerg. Infect. Dis. 4: 4. 551-560.

6. Shahcheraghi, F., Nikbin, V.S., and Feizabadi, M.M. (2009). Prevalence of ESBLs genes among multidrug-resistant isolates of Pseudomonas aeruginosa isolated from patients in Tehran. Microb. Drug Resist., 15: 37-39.

7. Gürtler, V., and Mayall, B.C. (2001). Genomic approaches to typing, taxonomy and evolution of bacterial isolates. Int. J. Syst. Evol. Microbiol., 51: 3-16.

8. Kiewitz, C. and Tummler, B. (2000). Sequence diversity of Psedomonas aeruginosa: Impact on population structure and genome evolution. J. Bacteriol. 182: 3125 – 3135.

9. Martin, C., Boyd, E.F., Quetin, P., Massicot and  Selander, R.K. (1999). Enzyme polymorphism in Pseudomonas aeruginosa strains recovered from cystic fibrosis patients in France. Microbiology. 145: 2578 – 2595.

10. Rumiy, R. E., Genauzeau, C., Barnabe, A., Beaulieu, M., Tibayrenc and  Andremont, A. (2001). Genetic diversity of Psedomonas aeruginosa strains isolated from ventilated patients with bacteremia and environmental water. Infec. Immun., 69: 584 – 588.

11. Onasanya, A., Basso, E. Somado, E.R., Gasor and Nwilene, F.E. et al., (2010). Development a combined molecular diagnostic and DNA fingerprinting technique for rice bacteria pathogens in Africa. Biotechnology. 9 : 89 – 105.

12. Chen, W. and Kuo, T.(1993). A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acid Research. 21: 9..

  1. 13.  Sambrok, J.A.(2001). Molecular Cloning: A Laboratory Manual. pp: 2100. 3rd ed. Cold Spring Harbor Laboratory Press, New York.
  2. 14.  Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982). Molecular cloning: A laboratory manual. Cold spring harbor laboratory, New York, U.S.A.

15. Weigand, F., Baum, M. and Udupa, S. (1993). DNA molecular marker techniques. Technical manual No.20.  ICARDA. Aleppo, Syria.

16. Rohlif, F. J. (1993). Numerical taxonomy and multivariate analysis system. Version 1. 80. Zxeter. Software. Setauket. N.Y.

17. Sneath, P. H., and Sokal, R. R. (1973). Numerical taxonomy. P:345. Freemon, San Francisco.

  1. 18.  Nei, M. (1972). Genetic distance between populations. Am. Nat. 106: 283-292.
  2. 19.  Graham, J. and McNicol, R. J. (1995).An examination of the ability of RAPD markers to determine the relationship within and between Rubus spp. Theoretical and Applied Genetics. 90: 1128-1132. 

20. Ogunseilan,O.(2005). Diagnostic Bacteriology Protocols.  P: 256. 2ed. Humana Press Totowa, New Jersey.

21. Willams, J.G.K., Kublik, A.R., Livake, K.J., Rafalski, J.A., and Tingey, S.V., (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.

  1. 22.  Giroti, R. (2006). The applicability of DNA techniques in investigations of hospital malpractices: a case report. Med. Sci. Law. 46:1.85-8.
  2. 23.  Ahmad, F. (1999).RAPD analysis reveals genetic relationships among annual Cicer species. Theo Appl Gene. 98:657- 663.

24. Hurtado, A. and Rodriguwz, F. (1999). Accessory DDNA in the genomes of representative of the Escherichia coli reference collection. J. of Bact.  2548-2554.

25. Weeden, N. F., Timmerman, G. M., and Kneecn, B. E. (1992). Inheritance and reliability of RAPD markers. In: Application of RAPD technologies plant breeding. P: 12-17. Crop. Sci. Society of American Madison, Press. U.S.A.

  1. 26.  Jarullah, B. M., Subramanian, R. B., and Jummanah, M. S. (2005). Phylogeny of certain biocontrol agents with special reference to nematophagous fungi based on RAPd. Commun Agric  Appl  Biol Sci.70: 4. 897-903.
  2. 27.  Distinguishes a unique subpopulation of Escherichia coli O157:H7 strains in cattle. Proc. Natt. Acad. Sci. USA.  96: 13288-13293.
  3. 28.  Grandmann, H., Shneider, C., Hartung, D., Dachner, F. D., and Pilt, T. L., (1995). Discriminatory, power of three DNA-based typing techniques for Pseudomonas aeruginosa. J. Clin. Microbiol.33:328-334.
  4. 29.  Sandery,  M., Coble, J. and Mckersie-Donnolley, S. (1994). Random Amplified Polymorphic DNA (RAPD) profiling of Legionella Pneumophila. Lett. Appl. Microbiol. 19: 184-187.

30. Grandmann, H., Shneider, C., Hartung, D., Dachner, F. D., and Pilt, T. L., (1995). Discriminatory, power of three DNA-based typing techniques for Pseudomonas aeruginosa. J. Clin. Microbiol. 33:328-334.

  1. 31.  Menon, W. C. et al (2003). Random amplification of polymorphic DNA based typing of Pseudomonas aeruginosa. MJAFI 59: 25-28.
  2. 32.  Perron, G.G., Gonzalez, A. and Buckling, A. (2008). The rate of environmental change drives adaptation to an antibiotic. J. Evolut. Biol. 21: 1724-1731.

33. Nazik, H., Ongen, B., Erturan, Z., and Salcioglu, M. (2007). Genotype and antibiotic susceptibility patterns of Pseudomonas aeruginosa and Stenotrophomonas maltophila isolated from cystic fibrosis patients. Japan J. Infect. Dis. 60: 82-86.

34. Mena,   A., Smith, E.E.,  Burns, J.L.,  Speert, D.P.,  Moskowitz, S.M.,  Perez, J.L and Oliver,  A. (2008). Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J. Bacteriol. 190: 7910-7917.

35. Speijer, H., Savelkoul, P.H., Bonten, M.J., Stobberingh, E.E., and Tjhie, J.H. (1999). Application of different genotyping methods for Pseudomonas aeruginosa in a setting of endemicity in an intensive care unit. J. Clin. Microbiol. 37: 11. 3654-3661.

36. Anatomy, M., Rose, B., and Pegler, M.B., et al.(2002). Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J. Clin. Microbiol. 40: 8. 2772-2778.

37. Taheri, Z. M., Shahbazi, N., and Kohoddami, M. (2008). Genetic diversity of Pseudomonas aeruginosa strains isolated from hospitalized patients. NRITLD. 7: 1, 32-39.

  1. 38.  Onasanya, A., Basso, A., Somado, E., Gasore, E.R., and Nwilene, F.E., et.al, (2010). Development of a combined molecular diagnostic and DNA fingerprinting technique for rice bacteria pathogens in Africa. Biotechnology. 9: 89-105.

39. Oldak, E., and Trafny, E.A. (2005). Secretion of proteases by Pseudomonas aeruginosa biofilms exposed to ciprofloxacm. Antimicrob. Agents Chemother. 49: 3281-3288.

40. Warner, E.A. and Moldawer, L.L.  (2008). Using innate immunity to characterize the host response to microbial invasion in severe sepsis. Future Microbiol. 3: 177-189.

41. Choy, M.H., Stapleton, F., Willcox, M.D.P.,  and Zhu,  H. (2008). Comparison of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens- and non-contact lens-related keratitis. J. Med. Microbiol., 57: 1539-1546.

42. Davies, J., Dewar, A.,   Bush, A., Pitt, T., Gruenert, D., Geddes, D.M.,  and  Alton, E.W. (1999).Reduction in the adherence of Pseudomonas aeruginosa to native cystic fibrosis epithelium with anti-asialogml antibody and neuraminidase inhibition. Eur. Respir. J. 13: 565-570.

43. Yang, L., Haagensen, J.A.J.,  Jelsbak, L.,  Johansen, H.K.,  Sternberg, C.,  Hoiby, N.,  and  Molin, S. (2008). In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections. J. Bacteriol. 190: 2767-2776.

44. Govan, J.R., and Deretic, V. (1996). Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkkolderia cepacia. Microbiol. Rev. 60: 539-574.

45. Rajan, L.A.,  Dharim, J.,  Singh, K.H.P.,  Sivvaswaamy, S.N., Sheela, J.S.,  and Sundar, N. (2010).Identification, cloning and sequence analysis of chitinase gene in Bacillus halodurans isolated from salted fish. Biotechnology.9:229-233.

46. Baer, M.,  Sawa, T.,  Flynn, P.,  Luehrsen, K., and  Martinez, D. et al. (2009). An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect. Immun.77: 1083-1090.