Document Type : Review Paper

Authors

1 Biology Department, College of Science, University of Anbar, Anbar, Iraq

2 Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq

3 Department of Medical Laboratory techniques, Osoul Aldeen University College, Baghdad, Iraq

Abstract

As a consequence of the rapid increase in the multiple drug-resistant bacteria worldwide, an alternative strategy is urgently required. Bacteriophage as a promising approach is used for the treatment of bacterial infections. Both in vitro and in vivo studies are performed for that purpose, there is a growing evidence on the affectivity of bacteriophage to treat infections caused by gram-positive and negative bacteria. It’s killing mechanism differs from antimicrobial agents by rabidly infecting the specific bacterial cell and lysing it without harming the host cell. This review focuses on the use of bacteriophage for the treatment of bacterial infections, especially multidrug-resistant bacteria.
 

 

Keywords

Main Subjects

resistance reveals serious, worldwide threat to public health. (2014). Available at: http://www.who.int/mediacentre/news/releases /2014/amr-report/en/.
[2]         Salmond, G. P. C. & Fineran, P. C. A century of the phage: past, present and future. Nature reviews. Microbiology 13, 777–786 (2015).
[3]      Haaber J, Leisner J. J., Cohn M.T., Catalan-Moreno A., Nielsen J.B., & Westh H. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat. Commun. 7, (2016).
[4]         Czaplewski L., Bax R., Clokie M., Dawson M., Fairhead H., & Fischetti V.A. Alternatives to antibiotics-a pipeline portfolio review. Lancet. Infect. Dis. 16, 239–251 (2016).
[5]         Keen, E. C. A century of phage research: bacteriophages and the shaping of modern biology. Bioessays 37, 6–9 (2015).
[6]         Sulakvelidze, A., Alavidze, Z. & Morris, J. G. J. Bacteriophage therapy. Antimicrob. Agents Chemother. 45, 649–659 (2001).
[7]         Wang, X. & Wood, T. K. Cryptic prophages as targets for drug development. Drug Resist. Updat.  Rev. Comment. Antimicrob. Anticancer  Chemother. 27, 30–38 (2016).
[8]         Kutter, E. & Sulakvelidze, A. Bacteriophages: biology and applications. (Crc press, 2004).
[9]         Alanis, A. J. Resistance to antibiotics: are we in the post-antibiotic era? Arch. Med. Res. 36, 697–705 (2005).
[10]       Viertel, T. M., Ritter, K. & Horz, H.-P. Viruses versus bacteria-novel approaches to phage therapy as a tool against  multidrug-resistant pathogens. J. Antimicrob. Chemother. 69, 2326–2336 (2014).
[11]       Nanda, A. M., Thormann, K. & Frunzke, J. Impact of spontaneous prophage induction on the fitness of bacterial populations and  host-microbe interactions. J. Bacteriol. 197, 410–419 (2015).
[12]       Lang, A. S., Zhaxybayeva, O. and  Beatty, J. T. Gene transfer agents: phage-like elements of genetic exchange. Nat. Rev. Microbiol. 10, 472–482 (2012).
[13]       Soucy, S. M., Huang, J. & Gogarten, J. P. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16, 472–482 (2015).
[14]       Rostøl, J. T. & Marraffini, L. (Ph)ighting Phages: How Bacteria Resist Their Parasites. Cell Host Microbe 25, 184–194 (2019).
[15]       Koskella, B. & Brockhurst, M. A. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in  microbial communities. FEMS Microbiol. Rev. 38, 916–931 (2014).
[16]       Wittebole, X., De Roock, S. & Opal, S. M. A historical overview of bacteriophage therapy as an alternative to antibiotics for  the treatment of bacterial pathogens. Virulence 5, 226–235 (2014).
[17]       Fokine, A. & Rossmann, M. G. Molecular architecture of tailed double-stranded DNA phages. Bacteriophage 4, e28281 (2014).
[18]       Cisek, A. A., Dąbrowska, I., Gregorczyk, K. P. & Wyżewski, Z. Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the  Discovery of Bacteriophages. Curr. Microbiol. 74, 277–283 (2017).
[19]       Nayak, T., Rakesh K., Singh R., Jaiswal A., Gupta, & Gupta A T. BACTERIOPHAGE ENCODED ENDOLYSINS AS POTENTIAL ANTIBACTERIALS. 63, 39–48 (2019).
[20]       Harper, D. R., Parracho H. M. R. T., Walker J., Sharp R., Hughes G., & Werthén M. Bacteriophages and Biofilms. Antibiotics 3, 270–284 (2014).
[21]       Matsuzaki, S., Rashel M., Uchiyama J., Sakurai S., Ujihara T., & Kuroda M. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Chemother.  Off. J. Japan Soc.  Chemother. 11, 211–219 (2005).
[22]       Lin, D. M., Koskella, B. & Lin, H. C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 8, 162–173 (2017).
[23]       Clark, J. R. Bacteriophage therapy: history and future prospects. Future Virol. 10, 449–461 (2015).
[24]       Rakonjac, J., Bennett, N. J., Spagnuolo, J., Gagic, D. & Russel, M. Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr. Issues Mol. Biol. 13, 51–76 (2011).
[25]       Chan, B. K., Abedon, S. T. & Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 8, 769–783 (2013).
[26]       Weber-Dabrowska, B., Mulczyk, M. & Górski, A. Bacteriophage therapy of bacterial infections: an update of our institute’s  experience. Arch. Immunol. Ther. Exp. (Warsz). 48, 547–551 (2000).
[27]       Abedon, S. T. & Thomas-Abedon, C. Phage therapy pharmacology. Curr. Pharm. Biotechnol. 11, 28–47 (2010).
[28]       Romero-Calle, D., Guimarães Benevides, R., Góes-Neto, A. & Billington, C. Bacteriophages as Alternatives to Antibiotics in Clinical Care. Antibiot. (Basel, Switzerland) 8, (2019).
[29]       Abedon, S. T. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages. Pharmaceuticals (Basel). 8, 525–558 (2015).
[30]       Sarker, S.A., Sultana S., Reuteler G., Moine D., Descombes P., & Charton F. Oral Phage Therapy of Acute Bacterial Diarrhea With Two Coliphage Preparations: A  Randomized Trial in Children From Bangladesh. EBioMedicine 4, 124–137 (2016).
[31]       Tetz, G. & Tetz, V. Bacteriophage infections of microbiota can lead to leaky gut in an experimental  rodent model. Gut Pathog. 8, 33 (2016).
[32]       Parasion, S., Kwiatek, M., Gryko, R., Mizak, L. & Malm, A. Bacteriophages as an alternative strategy for fighting biofilm development. Polish J. Microbiol. 63, 137–145 (2014).
[33]       Schmelcher, M. & Loessner, M. J. Application of bacteriophages for detection of foodborne pathogens. Bacteriophage 4, e28137 (2014).
[34]       Lerminiaux, N. A. & Cameron, A. D. S. Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 65, 34–44 (2019).
[35]       Chen, J. & Novick, R. P. Phage-mediated intergeneric transfer of toxin genes. Science 323, 139–141 (2009).
[36]       Sybesma, W., Rohde C., Bardy P., Pirnay J-P., Cooper I., & Caplin J. Silk Route to the Acceptance and Re-Implementation of Bacteriophage Therapy-Part II. Antibiot. (Basel, Switzerland) 7, (2018).
[37]       Thiel, K. Old dogma, new tricks--21st Century phage therapy. Nat. Biotechnol. 22, 31–36 (2004).
[38]       Sillankorva, S., Neubauer, P. & Azeredo, J. Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC Biotechnol. 8, 80 (2008).
[39]       Zaczek-Moczydłowska, M. A.,Young, G. K., Trudgett, J., Plahe, C.,Fleming, C. C., Campbell, K., & O’ Hanlon, R. Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. under in vitro and in vivo conditions. PLoS One 15, e0230842 (2020).
[40]       James, S. L., Rabiey, M., Neuman, B. W., Percival, G. & Jackson, R. W. Isolation, Characterisation and Experimental Evolution of Phage that Infect the  Horse Chestnut Tree Pathogen, Pseudomonas syringae pv. aesculi. Curr. Microbiol. 77, 1438–1447 (2020).
[41]       Ramírez, M., Neuman, B. W. & Ramírez, C. A. Bacteriophages as promising agents for the biological control of Moko disease (Ralstonia solanacearum) of banana. Biol. Control 149, 104238 (2020).
[42]       Tanaka, C., Yamada K., Takeuchi H., Inokuchi Y., Kashiwagi A., & Toba T. A Lytic Bacteriophage for Controlling Pseudomonas lactis in Raw Cow’s Milk. Appl. Environ. Microbiol. 84, (2018).
[43]       Kortright, K. E., Chan, B. K., Koff, J. L. & Turner, P. E. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe 25, 219–232 (2019).
[44]        Petrovic Fabijan, A., Lin R. C. Y., Ho J., Maddocks S., Ben Zakour N. L., & Iredell J. R. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 5, 465–472 (2020).